首先介绍了Wigner函数的基本性质以及以Wigner函数为基础的相空间定态微扰理论,然后将其应用到一维无限深势阱和谐振子.推导出一维无限深势阱所对应的Wigner函数,而且发现了存在于其纯态Wigner函数中奇特的压缩效应,并利用不确定性关系给予了解释.同时计算出一维无限深势阱和谐振子在微扰的作用下,相应Wigner函数和能级的修正.
参考文献
[1] | Hillery M,Conell R O,Scully M,et al.Phys Repts,1984,106:121;Lee H W.Bid,1995,259:147;Balasz N,Jennings B.Phys Repts,1984,104:347;Curtright T,Fairlie D,Zachos C,Phys Lett,1995,B405,37. |
[2] | Hillery M,Conell R O,Scully M,et al.Phys Repts,1984,106:121;Lee H W.Bid,1995,259:147;Balasz N,Jennings B.Phys Repts,1984,104:347;Curtright T,Fairlie D,Zachos C,Phys Lett,1995,B405,37. |
[3] | Hillery M,Conell R O,Scully M,et al.Phys Repts,1984,106:121;Lee H W.Bid,1995,259:147;Balasz N,Jennings B.Phys Repts,1984,104:347;Curtright T,Fairlie D,Zachos C,Phys Lett,1995,B405,37. |
[4] | Hillery M,Conell R O,Scully M,et al.Phys Repts,1984,106:121;Lee H W.Bid,1995,259:147;Balasz N,Jennings B.Phys Repts,1984,104:347;Curtright T,Fairlie D,Zachos C,Phys Lett,1995,B405,37. |
[5] | Moyal J,Proc Camb Phil Soc,1949,45:99. |
[6] | Curtright T,Uematsu T,Zachos C.arXiv:hep-th/0011137,2001. |
[7] | Mugs J G,Saga R,Brouard S.Solid State Communications,1995,94(10):877. |
[8] | Usenko C V.arXiv;quant-ph/0406238,2004. |
[9] | Kenfack A,Zyczkowski K.arXiv:quant-ph/0406015,2004. |
[10] | Kandemir B S.Phys Lett,1998,A245:209. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%