欢迎登录材料期刊网

材料期刊网

高级检索

目的研究人工心瓣热解碳涂层与基体结合强度的影响因素,从而分析提高人工心瓣寿命的途径。方法通过改进的剪切试验法,得到人工机械心瓣热解碳涂层/石墨基体的平均界面剪切结合强度。利用有限元分析软件ANSYS建立三维模型,对人工机械心瓣热解碳涂层/石墨基体的界面剪切应力进行分析,将分析结果与试验结果进行对比。利用ANSYS验证不同涂层厚度以及不同涂层弹性模量的情况下,界面剪切应力的变化情况。结果试验所得的平均界面剪切结合强度为5.535 MPa,有限元分析得到的平均结合强度值为5.98 MPa。随着涂层厚度的增加,涂层与基体结合强度降低;随着涂层弹性模量的增加,涂层与基体结合强度增大,但弹性模量并非越大越好,应有一个合适的值。结论ANSYS分析是准确的。制备热解碳涂层时,应尽量薄一些,热解碳的弹性模量相对石墨应尽量大一些。

ABSTRACT:Objective To investigate the factors influencing the bonding strength of the coating and the substrate to figure out a method to increase the lifetime of Artificial Mechanical Heart Valves. Methods The interfacial adhesive strength of pyrolytic car-bon-graphite for Artificial Mechanical Heart Valves was tested by the improved shear test. The finite element analysis software ANSYS was used to complete a three-dimensional analysis of interfacial shear stress of pyrolytic carbon-graphite, and the results were compared with the experimental results so that the accuracy of ANSYS analysis could be verified. ANSYS was used to analyze the differences of interfacial adhesive strength with different thicknesses of coating and elasticity modulus. Results The average in-terfacial adhesive strength was 5. 535 MPa according to shear test, while the value was 5. 98 MPa as calculated by ANSYS. The in-terfacial strength decreased as the thickness of Pyrolytic coating increased, and increased as the coating elastic modulus increased, but the elastic modulus value was not the higher the better, and there should be a proper value. Conclusion The ANSYS analysis was accurate. The Pyrolytic carbon coating should be as thin as possible and the elasticity modulus should be larger than that of Graphite.

参考文献

[1] 邢兴 .人工心瓣热解炭力学性能研究[D].杭州电子科技大学,2012.
[2] 杨班权,陈光南,张坤,罗耕星,肖京华.涂层/基体材料界面结合强度测量方法的现状与展望[J].力学进展,2007(01):67-79.
[3] 苏修梁,张欣宇.表面涂层与基体间的界面结合强度及其测定[J].电镀与环保,2004(02):6-11.
[4] 马峰,蔡珣.膜基界面结合强度表征和评价[J].表面技术,2001(05):15-19.
[5] Ferraris M;Verne E;Appendino P;Moisescu C;Krajewski A;Ravaglioli A;Piancastelli A .Coatings on zirconia for medical applications.[J].Biomaterials,2000(8):765-773.
[6] 崔学军,程平,张海涛,金为群,王洪艳.涂层与基体界面结合强度测定模型的有限元模拟[J].吉林大学学报(工学版),2007(02):357-361.
[7] BUSHBY R S;SCOTT V D .Liquid Phase Bonding of Al and Al/Nicalon Composite Using Copper Interlayers[J].Materi-al Science and Technology,1993,9:417-423.
[8] 杨金霞 .基体拉伸法测试膜基界面结合力的研究[D].天津大学,2007.
[9] DEHOFF Paul H;ANUSVICE Kenneth J;WANG Zhi-xin .Three-dimensional Finite Element Analysis of the Shear Bond Test[J].Dent Marter,1995,11:126-131.
[10] 周伟 .涂层结合强度的试验研究及有限元分析[D].南华大学,2005.
[11] 程序,闫静,王宏宇,左敦稳,李锁柱.高结合性能涂层与基体界面结合强度测定模型的有限元模拟[J].中国制造业信息化,2010(17):22-26.
[12] 孔德军;张永康;鲁金忠 等.基于XRD的涂层界面结合强度的实验研究[J].北京科技大学学报,2006,28(01):259-261.
[13] 朱晓东,米彦郁,胡奈赛,何家文.膜基结合强度评定方法的探讨-划痕法、压入法、接触疲劳法测定的比较[J].中国表面工程,2002(04):28-31.
[14] 张勇 .人工双叶机械瓣设计与制造[D].西南交通大学,2002.
[15] 颜志齐.热解石墨[C].第18届全国炭素经济技术信息交流会,2002:91-106.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%