欢迎登录材料期刊网

材料期刊网

高级检索

通过连续升温热膨胀法分析Ti55531 (Ti-5Mo-5Cr-5V-3Al-1Zr)合金在连续升温过程中的热膨胀行为、物相组成和显微组织,绘制热膨胀微分曲线.结果发现:随着升温速率的增加,相变温度逐渐升高.其中,在1℃/min的升温速率下不同温度区间内的相变行为如下:低于192℃时,发生ωath→β转变;192~347℃时,发生β→ωiso转变;347~376℃时,发生ωiso→αβ+、β→α转变;409~648℃时,发生β→α转变;648~831℃时,发生α→β转变;831℃时,转变为全β组织.计算得到α→β转变热激活能为188.04kJ/mol.

参考文献

[1] VLADISLAV V T,VASILIEVICH L,IGOR J P.Titanium-based alloy[P].US 2008/0210345,2008-04-10.,2008.
[2] DURET N.Titanium for damage tolerance application on A380[C]//LUTJERING G,ALBRECHT J.The 10th conference on titanium.Hamburg:TMS,2003:2667-2671.,2003.
[3] 鲍利索娃EA.钛合金金相学[M].陈石卿,译.北京:国防工业出版社,1986:243.BORISOVA E A.Metallography of titanium alloys[M].CHEN Shi-qin,transl.Beijing:National Defence Industry Press,1986:243.,1986.
[4] HARPER M,WILLIAMS R,VISWANATHAN G B,TILEY J,BANERJEE T,EVANS D J,FRASER H L.The effect of heat treatment on the microstructure of Ti-5Al-5Mo-5V-3Cr-1Fe (Ti-555)[C]//L(U)TJERING G,ALBRECHT J.Ti-2003 Science and Technology.Hamburg:DGM,2003:1559-1563.,2003.
[5] 付艳艳,宋月清,惠松骁,米绪军,叶文君.热处理对VST55531钛合金的组织和拉伸性能的影响[J].稀有金属,2008(04):399-403.
[6] 魏寿庸,祝瀑,王韦琪.Ti-5Al-5Mo-5V-1Cr-1Fe钛合金简介[J].钛工业进展,1998(4):8-12.WEI Shou-yong,ZHU Pu,WANG Wei-qi.Introduction of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J].Titanium Industry Progress,1998(4):8-12.,1998.
[7] PARRIS W M,BANIA P J.Oxygen effects on the mechanical properties of TIMTEAL 21s[C]//FROES F H,CAPLAN I.Titanium 92:Science and Technology.Warrendale:TMS,1993:153-157.,1993.
[8] 辛社伟,赵永庆.关于钛合金热处理和析出相的讨论[J].金属热处理,2006(09):39-42.
[9] 常辉,周廉,张廷杰.钛合金固态相变的研究进展[J].稀有金属材料与工程,2007(09):1505-1510.
[10] MITTEMEIJER E J,van GENT A,van der SCHAAF P J .Analysis of transformation kinetics by nonisothermal dilatometry[J].Metallurgical Transactions A,1986,17(8):1441-1447.,1986.
[11] HAMANA D,BOUMAZA L .Precipitation mechanism in Ag-8 wt.% Cu alloy[J].Journal of Alloys and Compounds,2009,477
[12] BEIN S,BECHET J .Phase transformation kinetics and mechanisms in titanium alloys Ti-6.2.4.6,β-CEZ and Ti-10.2.3[J].Journal De Physique IV,1996,6
[13] ZHOU Zhong-bo,LAI Ming-jie,TANG Bin,KOU Hong-chao,CHANG Hui,ZHU Zhi-shou,LI Jin-shan,ZHOU Lian .Non-isothermal phase transformation kinetics of ω phase in TB-13 titaniumalloys[J].Materials Science and Engineering A,2010,527
[14] HADJADJ L,AMIRA R,HAMANA D .Characterization of precipitation and phase transformations in Al-Zn-Mg alloy by the differential dilatometry[J].Journal of Alloys and Compounds,2008,462
[15] 张翥,王群骄,莫畏.钛的金属学和热处理[M].北京:冶金工业出版社,2009:50.ZHANG Zhu,WANG Qun-jiao,MO Wei.Metallurgy and heat-treatment of titanium[M].Beijing:Metallurgical Industry Press,2009:50.,2009.
[16] SZKLINIARZ W,SMOLKA G .Analysis of volume effects of phase transformation in titanium alloys[J].Journal of Materials Processing Technology,1995,53
[17] 周上祺.X射线衍射分析原理方法与应用[M].重庆:重庆大学出版社,1991:47.ZHOU Shang-qi.The principles and methods of X-ray diffraction analysis[M].Chongqing:Chongqing University Press,1991:47.,1991.
[18] ELMER J W,PALMER T A,BABUS S,SPECHT E D .In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V[J].Materials Science and Engineering A,2005,391(1):104-113.,2005.
[19] 张廷杰 .钛合金相变研究[J].Rare Metal Materials and Engineering,1989,18(5):77-82.ZHANG Ting-jie.The study on the phase transformation of titanium alloy[J].Rare Metal Materials and Engineering,1989,18(5):77-82.,1989.
[20] 李士凯,余魏,廖志谦,闫飞昊,王美姣.ω相对Ti10V2Fe3Al合金性能的影响[C].第十四届全国钛及钛合金学术交流会论文集,2010:387-392.
[21] OHMORI Y,OGO T,NAKAI K,KOBAYASHI S .Effects of ω-phase precipitation on β-α,α" transformations in a metastable β titanium alloy[J].Materials Science and Engineering A,2001,312(1):182-188.,2001.
[22] PRIMA F,VERMAUT P,TEXIER G,ANSEL D,GLORIANT T .Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy[J].Scripta Materialia,2006,54
[23] 王琛,毛小南,于兰兰,高平.TC11合金铸锭的微观偏析[J].热加工工艺,2009(19):4-6.
[24] KISSINGER H E .Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702-1706.,1957.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%