在经典力学框架内和小振幅近似下,把准等时同步加速器中的粒子纵向运动方程化为具有阻尼项、受迫项的广义维尔斯特拉斯方程。在无扰动情况下,用维尔斯特拉斯函数分析了系统的相平面特征;在扰动情况下,用多尺度法讨论了系统的稳定性。结果表明,在相平面上,分支轨道是一条过不稳定点的同宿轨道,包围的区域呈"鱼形"或α形。系统的稳定性由"鱼形"区的面积决定,面积越大系统越稳定;结果还表明,系统除了ωm=1的主共振外,还存在ωm=2,1/2的超次谐共振,并找到了系统稳定性的临界条件。
In the classical mechanics frame and with small amplitude approximation,the longutudial motion equation of particles in quasi-isochronous syhchrotron is reduced to the general Weierstrass equation with a damping term and a forced term.In the non-perturbed case,the phase plane properties are analysed by using Weierstrass function;in the perturbed case,the stabilities are discussed in terms of the multi-scalar techniques.The results show that the separatrix orbit is a homoclinic orbit through the instable point in the phase plane,the surrounding area is the fish form or α-form.The stabilities are determined by the fish area,the large the area,the better the stability;also the results show that there are ωm=2,1/2 super-and sub-harmonics resonance except the main resonance ωm=1,the critical condition of an instability is found.
参考文献
[1] | Veksler V I. Compt Rend Acad Sci USSR, 1944, 43: 329. |
[2] | Veksler V I. Compt Rend Acad Sci USSR, 1944, 44: 365. |
[3] | McMillan E M. PhysRev, 1945, 68: 143. |
[4] | Lee S Y. Accelerator Physics(2nd Edition). Shanghai: Fudan University Press, 2006, 309-315. |
[5] | Gradshteyn I S, Rizhik I M. Table of Integral, Series and Products. Londoni Academic Press, Inc Ltd, 1980, 917- 919. |
[6] | Nayfeh A H. Introduction to Perturbation Techniques. New York: John Wiley & Sons, 1981, 226-244. |
[7] | 罗诗裕,邵明珠,胡西多.高能物理与核物理,2004,28(1):96. |
[8] | 邵明珠,罗诗裕.物理学报,2007,56(6):3407. |
[9] | 罗诗裕,邵明珠,罗晓华.中国科学,2010,G40(2):207. |
[10] | 吴木营,陈琼,李洪涛,等.原子核物理评论,2010,27(1):107. |
[11] | 罗晓华,何为,罗诗裕,等.原子核物理评论,2009,26(3):242. |
[12] | 张梅,邵明珠,罗诗裕.原子核物理评论,2007,24(4):318. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%