欢迎登录材料期刊网

材料期刊网

高级检索

针对组分材料体积分数任意分布的聚合物功能梯度材料,研究其在蠕变加载条件下Ⅰ型裂纹应力强度因子(SIFs)和应变能释放率的时间相依特征.由Mori-Tanaka方法预测等效松弛模量,在Laplace变换域中采用梯度有限元法和虚拟裂纹闭合方法计算断裂参数,由数值逆变换得到物理空间的对应量.分析边裂纹平行于梯度方向的聚合物功能梯度板条,分别考虑均匀拉伸和三点弯曲蠕变加载.结果表明,聚合物梯度材料应变能释放率随时间增加,其增大的程度与黏弹性组分材料体积分数正相关;材料的非均匀黏弹性性质产生应力重新分布,导致裂纹尖端应力场强度随时间变化,当裂纹位于黏弹性材料含量较低的一边时,应力强度因子随时间增加,反之,随时间减小.而且,材料的应力强度因子与时间相依的变化范围和体积分数分布以及加载方式有关,当体积分数接近线性分布时,变化最明显,三点弯曲比均匀拉伸的变化大.SIFs随时间的延长增加或减小、加剧或减轻裂纹尖端部位的“衰坏”,表明黏弹性功能梯度裂纹体的延迟失稳需要联合采用应力强度因子与应变能释放率作为双控制参数.

参考文献

[1] Paulino G H,Jin Z H.Correspondence principle in viscoelastic functionally graded materials[J].ASME Journal of Applied Mechanics,2001,68(1):129-132.
[2] Paulino G H,Jin Z H.Viscoelastic functionally graded materials subjected to antiplane shear facture[J].ASME Journal of Applied Mechanics,2001,68(2):284-293.
[3] 李伟杰,王保林,张幸红.功能梯度材料的黏弹性断裂问题[J].力学学报,2008,40(3):402-406.Li Weijie,Wang Baolin,Zhang Xinghong.Viscoelastic fracture of a functionally graded material strip[J].Chinese Journal of Theoretical and Applied Mechanics,2008,40(3):402-406.
[4] 彭凡,马庆镇,戴宏亮.黏弹性功能梯度材料裂纹问题的有限元方法[J].力学学报,2013,45(3):359-366.Peng Fan,Ma Qingzhen,Dai Hongliang.Finite element method for crack problems in viscoelastic functionally graded materials[J].Chinese Journal of Theoretical and Applied Mechanics,2013,45(3):359-366.
[5] 张淳源.粘弹性断裂力学[M].武汉:华中理工大学出版社,1994.Zhang Chunyuan.Viscoelastic fracture mechanics[M].Wuhan:Hua zhong University of Science and Technology Press,1994.
[6] 梁军,杜善义.粘弹性复合材料力学性能的细观研究[J].复合材料学报,2001,18(1):97-100.Liang Jun,Du Shanyi.Study of mechanical properties of viscoelastic matrix composite by micromechanics[J].Acta Materiae Compositae Sinica,2001,18(1):97-100.
[7] 彭凡,顾勇军,马庆镇.热环境中黏弹性功能梯度材料及其结构的蠕变[J].力学学报,2012,44(2):308-316.Peng Fan,Gu Yongjun,Ma Qingzhen.Creep behavior of viscoelastic functionally graded materials and structures in thermal environment[J].Chinese Journal of Theoretical and Applied Mechanics,2012,44(2):308-316.
[8] Dave E V,Paulino G H,Buttlar W G,et al.Viscoelastic functionally graded finite-element method using correspondence principle[J].Journal of Materials in Civil Engineering,2011,23(1):39-48.
[9] Santare M H,Lambros J.Use of graded finite elements to model the behavior of nonhomogeneous materials[J].ASME Journal of Applied Mechanics,2000,67(4):819-822.
[10] Irwin G R.Analysis of stresses and strains near the end of a crack traversing a plate[J].ASME Journal of Applied Mechanics,1957,24(3):354-361.
[11] Rybicki E F,Kanninen M F.A finite element calculation of stress intensity factors by a modified crack closure integral[J].Engineering Fracture Mechanics,1977,9(4):931-938.
[12] Raju I S.Calculation of strain-energy release rates with high-order and singular finite-elements[J].Engineering Fracture Mechanics,1987,28(3):251-274.
[13] 解德,钱勤,李长安.断裂力学中的数值方法及工程应用[M].北京:科学出版社,2009:8-76.Xie De,Qian Qin,Li Chang'an.Numerical method in fracture mechanics and engineering application[M].Beijing:Science Press,2009:8-76.
[14] Kim J H,Paulino G H.Finite element evaluation of mixed mode stress intensity factors in functionally graded materials[J].International Journal for Numerical Methods in Engineering,2002,53(8):1903-1935.
[15] Bellman R,Kalaba R E,Lockett J.Numerical inversion of the Laplace transform[M].New York:Americal Elsevier Publish Corporation,1966:1-135.
[16] Swanson S R.Approximate Laplace transform inversion in dynamic viscoelasticity[J].ASME Journal of Applied Mechanics,1980,47(4):769-774.
[17] Yin H M,Paulino G H,Buttlar W G,et al.Micromechanicsbased thermoelastic model for functionally graded particulate materials with particle interactions[J].Journal of Mechanics and Physics of Solids,2007,55(1):132-160.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%