通过分析研究变形温度、应变速率及变形程度参数对TC4-DT钛合金高温变形行为的影响,建立了一种基于自适应模糊神经网络的TC4-DT钛合金高温变形本构关系预测模型.高温变形热模拟压缩试验的变形温度为750~1150℃,应变率为0.001~10 s-1,试样高度压缩率为50%.本研究中建立的网络模型集成了模糊推理系统误差反向传播(BP)神经网络的学习算法.结果表明,该模型的预测值与实验结果比较吻合,最大相对误差小于6%.本研究证明模糊神经网络是一种优化TC4-DT钛合金本构关系模型和优化变形工艺参数的有效、实用方法.
参考文献
[1] | Leo Prakash D G;Ding R;Moat R J et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2010,527(21-22):5734. |
[2] | Momeni A;Abbasi S M .[J].Materials & Design,2010,31:3599. |
[3] | Luo Jiao;Li Miaoquan;Li Hong et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2009,505:88. |
[4] | Prasad Y V R K;Seshacharyulu T;Medeiros S C et al.[J].Journal of Materials Processing Technology,2001,108:320. |
[5] | Boyer R;Welsch G;Collings E W.Materials Properties Handbook:Titanium Alloys[M].OH:ASM International,1994:483. |
[6] | Froes F H;Mitchell A;Senkov O N.Non-Aerospace Applications of Titanium[M].USA:TMS,1998:135. |
[7] | 张兴全;彭颖红;阮雪榆 .[J].中国有色金属学报,1999,9(03):590. |
[8] | 熊爱明,黄维超,陈胜晖,林海,李淼泉.TC6钛合金高温变形组织演化的模糊神经网络预测模型[J].金属学报,2002(z1):633-636. |
[9] | Sugeno M;Yasukawa T .[J].IEEE Transactions on Fuzzy Systems,1993,1(01):7. |
[10] | Du H P;Zhang N .[J].ApplSoft Comput,2008,8:76. |
[11] | Han Yuanfei;Zeng Weidong;Zhao Yongqing et al.[J].Materials & Design,2010,31:4380. |
[12] | Malcor J G;Montheillet F;Champin B.Titanium:Science and Technology[M].Germany:Deutsche Gesellschaft for Metalkunde,1985:1495. |
[13] | Seshacharyulu T;Medeiros S C;Morgan J T;Malas J C;Frazier W G;Prasad Y V R K .Hot deformation mechanisms in ELI grade Ti-6Al-4V.[J].Scripta materialia,1999(3):283-288. |
[14] | 刘青,薛祥义,付宝全,王一川.TC4-DT钛合金的热变形行为研究[J].热加工工艺,2009(12):43-47. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%