采用微波法合成出MCM-41介孔材料,并与水热法、室温法进行比较.结果表明:在120W微波功率下加热40min就可得到结构较理想的MCM-41介孔材料,且微波加热时间的变化会影响到样品的有序性,但对孔径影响不大.通过与水热法和室温法进行比较发现,微波法合成的MCM-41煅烧后的收缩率与水热法相近,比室温合成的MCM-41要小,因而其热稳定性比室温法好,与水热法差不多.
参考文献
[1] | Kresge C T;Leonowicz M E;Roth W J et al.Synthesized by a liquid-crystal tempate mechanism[J].Nature,1992,159(22):710. |
[2] | Akira Taguchi;Ferdi Schuth .Ordered mesoporous materials in catalysis[J].Microporous and Mesoporous Materials,2005(1):1-45. |
[3] | 许磊,王公慰,魏迎旭,齐越.MCM-41介孔分子筛合成研究Ⅰ.水热合成法[J].催化学报,1999(03):247-250. |
[4] | Edler K J;White J W.Room temperature formation of molecular-sieve MCM-41[J].Journal of the Chemical Society,Chemical Communications,1995(02):155. |
[5] | 姚云峰,张迈生,杨燕生.纳米介孔分子筛MCM-41的微波辐射合成法[J].物理化学学报,2001(12):1117-1121. |
[6] | Lin W Y;Chen J S;Sun Y.Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J].Journal of the Chemical Society,Chemical Communications,1995(23):2367. |
[7] | Fyfe CA.;Fu GY. .STRUCTURE ORGANIZATION OF SILICATE POLYANIONS WITH SURFACTANTS - A NEW APPROACH TO THE SYNTHESES, STRUCTURE TRANSFORMATIONS, AND FORMATION MECHANISMS OF MESOSTRUCTURAL MATERIALS[J].Journal of the American Chemical Society,1995(38):9709-9714. |
[8] | Melosh N.A.;Bates F.S.;Wudl F.;Stucky G.D.;Fredrickson G.H.;Chmelka B.F.;Lipic P. .Molecular and mesoscopic structures of transparent block copolymer-silica monoliths[J].Macromolecules,1999(13):4332-4342. |
[9] | MacLachlan M J;Coombs N;Ozin G A .Non-aqueous supramolecular assemply of mesostructured metal germanium sulphides form(Ge4S10)(4-)clusters[J].Nature,1999,397:681. |
[10] | Park S E;Kim D S;Chang J S et al.Synthesis of MCM41 using microwave heating with ethylene glycol[J].Catalysis Today,1998,44:301. |
[11] | 许磊,王公慰,魏迎旭,齐越,刘宪春,包信和.MCM-41介孔分子筛合成研究Ⅱ.微波辐射合成法[J].催化学报,1999(03):251-255. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%