原位观察交变电流作用下纳米晶铜互连线的表面损伤形貌演化过程,重点研究了交变热-机械载荷作用下硅基铜互连线的电致热疲劳性能.结果表明,铜互连线电致热疲劳寿命随着电流密度的增加而减小;载流铜互连线表现出新的变形方式,具有独特的电致热疲劳行为特征.在低电流密度(j<10 MA/cm2)条件下,在电致热疲劳中应力控制的晶粒挤出损伤机制起主导作用;而在高电流密度(j>10 MA/cm2)条件下,交变电流产生的焦耳热效应起主导作用.
参考文献
[1] | I.A.Blech.Electroraigration in thin aluminum films on titanium nitride,J.Appl.Phys.,47,1203(1976) |
[2] | H.Okabayushi.Stress-induced void formation in metallization for integrated circuits,Mater.Sci.Eng.R,11,191(1993) |
[3] | C.S.Hau-Riege.An introduction to Cu electromigration,Microelectron.Reliab.,44,195(2004) |
[4] | E.Misra,C.Marenco,N.D.Theodore,T.L.Alford,Failure mechanisms of silver and aluminum on titanium nitride under high current stress,Thin Solid Films,474,235(2005) |
[5] | C.Hu.Reliability phenomena under AC stress,Microelectron.Reliab.,38,1(1998) |
[6] | R.M(o)nig,R.R.Keller,C.A.Volkert,Thermal fatigue testing of thin metal films,Rev.Sci.Instrum.,75,4997(2004) |
[7] | R.M(o)nig,Y.B.Park,C.A.Volkert,Thermal fatigue in copper interconnects.AIP Conference Proceedings,817,147(2006) |
[8] | Y.B.Park,R.M(o)nig,C.A.Volkert,Thermal fatigue as a possible failure mechanism in copper interconnects,Thin Solid Films,504,321(2006) |
[9] | G.P.Zhang,C.A.Volkert,R.Schwaiger,R.M(o)nig,O.Kraft,Fatigue and thermal fatigue damage analysis of thin metal films,Microelectron.Reliab.,47,2007(2007) |
[10] | J.Zhang,J.Y.Zhang,G.Liu,Y.Zhao,X.D.Ding,G.P.Zhang,J.Sun,Unusual thermal fatigue behaviors in 60 nm thick Cu interconnects,Scripta Mater.,60,228(2009) |
[11] | J.Zhang.Size effects on the fatigue behaviors in submicron thin copper films,PhD Dissertation,Xi'an Jiaotong University,2008 |
[12] | E.Misra,N.D.Theodore,J.W.Mayer,T.L.Alford,Failure mechanisms of pure silver,pure aluminum and silveraluminum alloy under high Current stress,Microelectron.Reliab.,46,2096(2006) |
[13] | S.J.Hwang,J.H.Lee,C.O.Jeong,Y.C.Joo,Effect of film thickness and annealing temperature on hillock distributions in pure Al films,Scripta Mater.,56,17(2007) |
[14] | S.H.Lee,D.Kwon,The analysis of thermal stress effect on electromigration failure time in Al alloy thin-film interconnects,Thin Solid Films 341(1999)136 |
[15] | D.K.Kim,W.D.Nix,R.P.VinciMichael,D.Deal,J.D.Plummer.Study of the effect of grain boundary migration on hillock formation in Al thin films.J.Appl.Phys.,90,781(2001) |
[16] | J.Schiφtz,K.W.Jacobsen,A Maximum in the Strength of Nanocrystalline Copper,Science,301,1357(2003) |
[17] | S.P.Baker,A.Kretschmann,E.Arzt,Thermomechanical behavior of difierent texture components in Cu thin films,Acta Mater.,49,2145(2001) |
[18] | H.Van Swygenhoven,P.M.Derlet,A.G.Frφseth.Stacking fault energies and slip im nanocrystalline metals,Nat.Mater.3,399(2004) |
[19] | G.Dehm,S.H.Oh,P.Gruber,M.Legros,F.D.Fischer,Strain compensation by twinning in Au thin films:Experiment and model,Acta Mater.,55,6659(2007) |
[20] | V.Yamakov,D.Wolf,S.R.Phillpot,A.K.Mukherjee,H.Gleiter.Deformation mechanism crossover and mechanicalbehaviour in nanoerystalline materials.Philos.Mag.Lett.,83,385(2003) |
[21] | V.Yamakov,D.Wolf,S.R.Phillpot,A.K.Mukherjee,H.Gleiter.Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation,Nat.Mater.,1,1(2002) |
[22] | M.W.Chen,E.Ma,K.J.Hemker,H.W.Sheng,Y.M.Wang,X.M.Cheng.Deformation Twinning in Nanocrystalline Aluminum,Science,300,1275(2003) |
[23] | J.Schiφtz.F.D.Di Tolla,K.W.Jacobsen.Softening of nanocrystalline metals at very small grain sizes,Nature,391,561(1998) |
[24] | Z.W.Shan,E.A.Stach,J.M.K.Wiezorek,J.A.Knapp,D.M.Follstaedt,S.X.Mao,Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel,Science,305,654(2004) |
[25] | D.Pan,S.Knwano,T.Fujita,M.W.Chen,UltraLarge Room-Temperature Compressive Plasticity of a Nanocrystalline Metal,Nano.Lett.,7,2018(2007) |
[26] | X.L.Wu,E.Ma.Mater,Dislocations and twins in nanocrystalline Ni after severe plastic deformation:the effects of grain size,Sci.Eng.A.,483-484,84(2008) |
[27] | Z.Budrovic,H.Van Swygenhoven,PIM.Derlet,S.Van Petegem,B.Schmitt,Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel,Science,304,273(2004) |
[28] | E.Arzt.Size effects in materials due to microstructural and dimensional constraints:a comparative review,Acta Mater.,46,5611(1998) |
[29] | C.X.Huang,K.Wang,S.D.Wu,Z.F.Zhang,G.Y.Li,S.X.Li,Deformation twinning in polycrystalline copper at room temperature and low strain rate,Acta Mater.,54,655(2006) |
[30] | H.Van Swygenhoven,M.Spaczer,A.Caro,D.Farkas,Competing plastic deformation mechanisms in nanophase metals,Phys.Rev.B,60,22(1999) |
[31] | T.Shimokawa,A.Nakatani,H.Kitagawa,Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by moleccular dynamics simulations,Phys.Roy.B,71,2241 10(2005) |
[32] | B.N.Kim,K.Hiraga,K.Morita,Viscous grain-boundary sliding and grain rotation accommodated by grainboundary diffusion,Acta Mater.,53,1791(2005) |
[33] | K.S.Kumar,H.Van Swygenhoven,S.Suresh,Mechanical behavior of nanocrystalline metals and alloys,Acta Mater.,51,5743(2003) |
[34] | F.Si ska,S.Forest,P.Gumbsch,Simulations of stressstrain heterogeneities in copper thin films:Texture and substrate effects,Computational Materials Science,39,137(2007) |
[35] | X.Z.Liao,F.Zhou,E.J.Lavernia,S.G.Srinivnsan,M.I.Baskes,D.W.He,Y.T.Zhu,Deformation mechanism in nanocrystalline Al:Partial dislocation slip,Appl.Phys.Lett.83,632(2003) |
[36] | X.Z.Liao,F.Zhou,E.J.Lavernia,D.W.He,Y.T.Zhu,Deformation twins in nanocrystalline Al,Appl.Phys.Lett.,83,5062(2003) |
[37] | D.Chocyk,A.Proszynski,G.Gladyszewski,Diffusional creep induced stress relaxation in thin Cu films on silicon,Microelectron.Eng.,85,2179(2008) |
[38] | S.J.Hwang,Y.D.Lee,Y.B.Park,J.H.Lee,C.O.Jeong,Y.C.Joo,In situ study of stress relaxation mechanismsof pure Al thin films during isothermal annealing,Scripta Mater.,54,1841(2006) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%