利用溶胶-凝胶法合成了两种不同居里温度的Ba0.80Sr0.20TiO3(BST-80)和Pb0.82La0.12TiO3(PLT-12)铁电陶瓷微粉.以陶瓷微粉,低熔点玻璃粉末PbO-B2O3等混合配制浆料,应用丝网印刷法在ITO石英玻璃基板上制备厚膜,并在550-750℃温度下于密封的石英套管中烧结致密化,成功的在750℃低温下制备出BST-80和PLT-82晶相稳定共存的复合厚膜.厚膜的相关性能通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、阻抗仪(LCR)等手段进行测试.结果表明,厚膜的形成主要通过750℃下PbO-B2O2玻璃相的浸润及均匀包裹到颗粒表面并经颗粒在玻璃相中一定的液相传质过程而致密化;通过控制玻璃相的包裹及控制颗粒的扩散实现颗粒相的稳定共存.厚膜中PLT-82晶相的晶格受Pb2+离子扩散进入玻璃相而略有缩小.这种复合厚膜的介电常数在较宽的温度范围0-300℃间的变化率<18%,具有较高的温度稳定性.
Sol-gel derived Ba0.80Sr0.20TiO3 and Pb0.82La0.12TiO3 ferroelectric powders and a low-melting PbO-B2O3 glass powder were mixed to prepare paste. The composite
thick films were successfully prepared by screen printing onto the quartz glass substrates with the ITO bottom electrode and then calcined in the sealed silica tube at the low temperature between 550℃
and 750℃. XRD, SEM and LCR were used to measure the structure and dielectric constants of the composite thick films. The results show that the high infiltration of the PbO-B2O3 liquid
phase in the thick film gives rise to the ferroelectric powders uniform encapsulated by the PbO-B2O3 phase at the temperature of 750℃ and then the mass transport through the liquid phase, which
promote the densification of the thick film. The stable coexistence between the Ba0.80Sr0.20TiO3 and Pb0.82La0.12TiO3 crystal phases can be controlled directly by both the glass phase
encapsulated and the diffusion from the particles to the glass phase. The slight reduction of the lattice of the PLT-82 crystal phase in the thick film occurs due to Pb2+ ion vacancy generated by the diffusion.
The relative dielectric constant of the composite thick films exhibits the temperature-stable behavior. The variance of the dielectric constants is less than 18% in the temperature range 0--300℃
参考文献
[1] | ] Cheng J G, Tang J, Zhang A J, et al. Applied Physics A, 2000, 71: 667--670. [2] Algueró M, Kholkin A, Calzada M L, et al. Applied Physics A, 2000, 71: 195--202. [3] Qu W M, Wlodarski W, Green R, et al. Proceedings of 1999 Optoelectronic and Microelectronic Materials Devices, 1999. 158--161. [4] Wolny W W. Proceedings of the 2000 12th IEEE International Symposium on Applications of Eerroelectrics, 2000. ISAF 2000. 2000, 1: 257--262. [5] Burianova L, Kopal A, Nosek J. Materials Science and Engineering B, 2003, 99: 187--191. [6] Tavernor A W, Li H P, Stevens R. Journal of the European Ceramic Society, 1999, 19: 1859--1863. [7] Hollingsworth M D. Science, 2002, 295: 2410--2413. [8] HornsbyJ S, Das-Gupta D K. Journal of Applied Physics, 2000, 87: 467--454. [9] Wu Y J, Uekawa N F, Sasaki Y, et al. Journal of the American Ceramic Society, 2002, 85: 1988--1992. [10] Wu R, Du P Y, Zhang H F, et al. Journal of Iron and Steel Research International, 2002, 6: 220--224. [11] Hiroyuki S, Hirofumi M, Makoto K. Journal of Sol-Gel Science and Technology, 1999, 16: 129--134. [12] Kim T Y, Jang H M, Cho S M. Solid State Communications, 2001, 119: 527--532. [13] Miguel A M, Lourdes C, Lorena P. Journal of Materials Research, 1999, 14: 4302--4306. [14] Baltazar-Rodriguesa J, Eiras J A. Journal of the European Ceramic Society, 2002, 22: 2927--2932. [15] Alguero M, Calzada M L, Quintana C, et al. Applied Physics A: Materials Science and Processing, 1999, 68: 583--592. [16] Du P, Miranda Salvado I M, Vilarinho P M. Thin Solid Films, 2000, 375: 19--23. [17] Su B, Holmes J E, Cheng B L, et al. Journal of Electroceramics, 2002, 9: 113--118. [18] Grogger W, Hofer F, Warbichler P, et al. physica status solidi, 1998, 166 (a): 315--325. [19] Yang R Y, Lin M H, Lu H Y. Acta Materialia, 2001, 49: 2597--2607. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%