采用聚焦脉冲激光研究了Ge2Sb2Te5薄膜在沉积和激光淬火两种非晶态下反射率与激光脉冲宽度变化的关系,发现沉积态的Ge2Sb2Te5薄膜在晶化触发阶段内的反射率随激光脉冲宽度增加而减小,经过激光淬火的非晶态Ge2Sb2Te5薄膜在晶化触发阶段内的反射率随激光脉冲宽度增加而变化平缓.本文借用气-液体系中过饱和度分析液滴形成的原理,从统计物理学角度详细研究了两种非晶态Ge2Sb2Te5薄膜在脉冲激光作用下的晶化过程及机理,结果表明,当Ge2Sb2Te5的非晶态程度处于未饱和或饱和状态时不形成晶核;当Ge2Sb2Te5的非晶态程度处于过饱和状态时,此时的Ge2Sb2Te5为亚稳态,可能形成大小不等的晶核,但只有半径大于临界晶核尺寸时才可能长大成晶粒.而应力降低晶化能垒,增加非晶态Ge2Sb2Te5的过饱和度是导致沉积态与激光淬火态的Ge2Sb2Te5薄膜在晶化触发阶段内反射率随激光脉冲宽度变化规律不一致的根本原因,并据此解释了Ge2Sb2Te5薄膜在这两种状态下的反射率随激光脉冲宽度的变化特点及规律.
The relationship between the reflectivity of the Ge2Sb2Te5 thin films, which are as-deposited
and melt-quenched states separately, and the pulsed laser time was investigated by the focused pulse laser, and it was found that
the reflectivity changes for the two kinds of samples are different. On the basis of the principle of the droplet formation in the gas-liquid
system and the basic ideas of the statistical physics, the crystallization mechanism and course of the Ge2Sb2Te5 thin films, which are in
as-deposited and melt-quenched states separately, were analyzed and studied in detail. The crystalline nucleus can’t form if Ge2Sb2Te5 is in
below-saturation or saturation state, different size crystalline nucleus can form if it is in super-saturation. While only the crystalline nucleus
which are more than the critical size can grow into crystalline. In addition, the stress, decreasing the crystallization energy barrier and increasing
the super-saturation degree of the amorphous Ge2Sb2Te5, is the leading factor causing the different relationships of reflectivity change
with pulsed laser width between the as-deposited and melt-quenched Ge2Sb2Te5 thin films. At the same time, on the basis of the
analytical results, the reflectivity change characters and laws of the two kinds of the samples under the focused pulse laser were explained in detail.
参考文献
[1] | Pramod K. Khulbe, Mansuripur M, et al. J. Appl. Phys., 2000, 88 (7): 3926--3933. [2] Yamada Noboru, et al. J. Appl. Phys., 2000, 88 (12): 7020--7028. [3] Chubing Peng, Mansuripur M, et al. J. Appl. Phys., 1997, 82 (9): 4183--4190. [4] Yamada Noboru, et al. J. Appl. Phys., 1991, 69 (5): 2849--2856. [5] Volkert C A, et al. J. Appl. Phys., 1999, 86 (4): 1808--1816. [6] Pramod K. Khulbe, Mansuripur M, et al. Appl. Opt., 2000, 39 (14): 2359--2365. [7] Wan E, Wright M, Mansuripur M, et al. Appl. Opt., 2000, 39 (35): 6695--6701. [8] Jeong Tae H, Kim Myong R, et al. J. Appl. Phys., 1999, 86 (2): 774--778. [9] Friedrich I, Weidenhof V, et al. J. Appl. Phys., 2000, 87 (9): 4130--4134. [10] Weidenhof V, Pirch N, et al. J. Appl. Phys., 2000, 88 (2): 657--664. [11] Kim Jin-Hong, et al. J. Appl. Phys., 1999, 86 (12): 6770--6772. [12] 干福熹主编. 数字光盘存储技术. 北京: 科学出版社, 1998. 209--215. [13] 天津大学物理化学教研室编. 物理化学. 北京: 高等教育出版社, 1992. 328--334. [14] Frenkel J. Kinetic Theory of Liquids. 1995 Dover, New York. Chap. 7. [15] McDonald J E. Am. J. Phys., 1962, 30: 870--877. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%