欢迎登录材料期刊网

材料期刊网

高级检索

基于对材料断裂的物理本质分析,提出断裂决定于应力第一不变量I1的理论假设,并给出相应的断裂准则,即材料局部区域的应力第一不变量I1达到一临界值Ib时,断裂开始发生,定义该临界值Ib为断裂强度,用单轴拉伸试验可以确定材料的断裂强度Ib.利用该断裂准则与Mises屈服准则,四种基本力学行为判据是:(1)弹性变形σmises<σy,I1<Ib;(2)塑性变形σmises ≥σy,I1<Ib;(3)脆性断裂σmises<σy,I1≥Ib;(4)塑性断裂σmises≥σy,I1≥Ib.

参考文献

[1] 坎贝尔 J E;格伯里奇 W W;安德伍德 J H;汪一麟 邵本逑.断裂力学在选材方面的应用[M].北京:冶金工业出版社,1992:1-11.
[2] 程靳;赵树山.断裂力学[M].北京:科学出版社,2008:1-5,9-47,100-143.
[3] Griffith A A .The phenomena of rupture and flow in solids[J].Phil Trans,1921,A221:179-180.
[4] Irwin G R .Analysis of stress and strain near the end of a crack traversing a plate[J].Appl Mech,1957,24:361-364.
[5] Wells A A .Appolications of fracture mechanics at/and beyond general yielding[J].British Welding Journal,1965,10:563-570.
[6] Dugdale D S .Yielding of sheets containing slits[J].Mechanics and Physics of Solids,1960,8:100-108.
[7] Bagley J A;Landes J D.The J-integral as a fracture criterion[A].American Society for Testing and Materials,1972:1-20.
[8] Bagley J A;Landes J D.The effect of specimen geometry on JIc[A].American Society for Testing and Materials,1972:24-39.
[9] Rice J R .A path independent and approximate analysis of strain concentration by notches and crack[J].J Application mechanics,1968,35:379-386.
[10] Hutchinsom JW .Singular behavior at the end of a tensile crack in a hardening material[J].Journal of the Mechanics and Physics of Solids,1968,16:13-31.
[11] Rice J R;Rosengren G F.Plane strain deformation near a crack tip in a power law hardening material[J].Mechanics and Physics of Solids,1968:1-12.
[12] Callister W D.Materials Science and Engineering:an Introduction[M].New York:John Wiley and Sons,Inc,2007:139,208-223.
[13] 皮萨林科ГС;列别捷夫AA;江明行.复杂应力状态下的材料变形与强度[M].北京:科学出版社,1983:6-34,209-402.
[14] 徐秉业;陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981:42-80.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%