欢迎登录材料期刊网

材料期刊网

高级检索

ZnO纳米棒具有优异的光学性质,石墨烯具有优良的电学性质并且可变形,制备出高质量ZnO纳米棒/石墨烯异质结构能够发挥两者协同效应,有望在高性能光电子器件中实现重要应用.综述了近几年来国内外关于ZnO纳米棒/石墨烯异质结构的最新研究进展,重点包括该结构的各种制备技术及特点,该结构在发光器件、太阳能电池器件、光电探测器以及光催化剂等方面的应用研究进展,最后展望了其未来发展趋势和研究重点.

参考文献

[1] U. Ozgur;Ya. I. Alivov;C. Liu;A. Teke;M. A. Reshchikov;S. Dogan;V. Avrutin;S.-J. Cho;H. Morkoc .A comprehensive review of ZnO materials and devices[J].Journal of Applied Physics,2005(4)
[2] Look DC. .Recent advances in ZnO materials and devices[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2001(1/3):383-387.
[3] Huang Michael H;Mao Samuel;Feick Henning et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897.
[4] Won Il Park;Gyu-Chul Yi .Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN[J].Advanced Materials,2004(1):87-90.
[5] Efficient field emission from ZnO nanoneedle arrays[J].Applied Physics Letters,2003(1):144-146.
[6] Jun Zhou;Yudong Gu;Youfan Hu;Wenjie Mai;Ping-Hung Yeh;Gang Bao;Ashok K. Sood;Dennis L. Polla;Zhong Lin Wang .Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization[J].Applied Physics Letters,2009(19):191103-1-191103-3-0.
[7] Law M;Greene LE;Johnson JC;Saykally R;Yang PD .Nanowire dye-sensitized solar cells[J].Nature materials,2005(6):455-459.
[8] Wang ZL;Song J .Piezoelectric nanogenerators based on zinc oxide nanowire arrays.[J].Science,2006(5771):242-246.
[9] Yang, RS;Qin, Y;Dai, LM;Wang, ZL .Power generation with laterally packaged piezoelectric fine wires[J].Nature nanotechnology,2009(1):34-39.
[10] Xu Sheng;Wang Zhonglin .One-dimensional ZnO nanostructures:Solution growth and functional properties[J].Nano Res,2011,4(11):1013.
[11] Novoselov K S;Geim A K;Morozov S V et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666.
[12] Nair RR;Blake P;Grigorenko AN;Novoselov KS;Booth TJ;Stauber T;Peres NM;Geim AK .Fine structure constant defines visual transparency of graphene.[J].Science,2008(5881):1308-1308.
[13] Bolotin, KI;Sikes, KJ;Jiang, Z;Klima, M;Fudenberg, G;Hone, J;Kim, P;Stormer, HL .Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,2008(9/10):351-355.
[14] Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN .Superior thermal conductivity of single-layer graphene[J].Nano letters,2008(3):902-907.
[15] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone .Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008(5887):385-388.
[16] Stoller MD;Park SJ;Zhu YW;An JH;Ruoff RS .Graphene-Based Ultracapacitors[J].Nano letters,2008(10):3498-3502.
[17] Geim A K .Graphene:Status and prospects[J].Science,2009,324(5934):1530.
[18] Yong-Jin Kim;Jae-Hyun Lee;Gyu-Chul Yi .Vertically aligned ZnO nanostructures grown on graphene layers[J].Applied physics letters,2009(21):213101-1-213101-3.
[19] Tran V C;Viet H P;Jin S C et al.Solution-processed ZnO-chemically converted graphene gas sensor[J].Materials Letters,2010,64(20):2479.
[20] Xu Chunju;Lee Jae-Hyun;Lee Jong-Cheol et al.Electrochemical growth of vertically aligned ZnO nanorod arrays on oxidized Bi-layer graphene electrode[J].Crystal Engineering Communications,2011,13(20):6036.
[21] Kumar, B;Lee, KY;Park, HK;Chae, SJ;Lee, YH;Kim, SW .Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators[J].ACS nano,2011(5):4197-4204.
[22] Kim Y J;Hadiyawarman;Yoon A et al.Hydrothermally grown ZnO nanostructures on few-layer grapheme sheets[J].Nanotechnology,2011,22(24):245603.
[23] Sung Won Hwang;Dong Hee Shin;Chang Oh Kim;Seung Hui Hong;Min Choul Kim;Jungkil Kim;Keun Yong Lim;Sung Kim;Suk-Ho Choi;Kwang Jun Ahn;Gunn Kim;Sung Hyun Sim;Byung Hee Hong .Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films[J].Physical review letters,2010(12):127403.1-127403.4.
[24] Chung Kunook;Lee Chul-Ho;Yi Gyu-Chul .Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices[J].Science,2010,330(6004):655.
[25] Chul-Ho Lee;Yong-Jin Kim;Young Joon Hong;Seong-Ranjeon;Sukang Bae;Byung Hee Hong;Gyu-Chul Yi .Flexible Inorganic Nanostructure Light-Emitting Diodes Fabricated on Graphene Films[J].Advanced Materials,2011(40):4614-4619.
[26] Ye Yu;Gan Lin;Dai Lun et al.Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes[J].Journal of Materials Chemistry,2011,21(32):11760.
[27] Jung Min Lee;Jaeseok Yi;Won Woo Lee;Hae Yong Jeong;Taeil Jung;Youngchae Kim;Won Il Park .ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes[J].Applied physics letters,2012(6):061107-1-061107-5.
[28] Zhang S G;Zhang X W;Si F T et al.Ordered ZnO nanorods-based heterojunction light-emitting diodes with grapheme current spreading layer[J].Applied Physics Letters,2012,101(12):121104.
[29] Yin, ZY;Wu, SX;Zhou, XZ;Huang, X;Zhang, QC;Boey, F;Zhang, H .Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells[J].Small,2010(2):307-312.
[30] Yang, K.;Xu, C.;Huang, L.;Zou, L.;Wang, H. .Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide[J].Nanotechnology,2011(40):405401-1-405401-8.
[31] Joonho Bae;Young Jun Park;Minbaek Lee;Seung Nam Cha;Young Jin Choi;Churl Seung Lee;Jong Min Kim;Zhong Lin Wang .Single-Fiber-Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes[J].Advanced Materials,2011(30):3446-3449.
[32] Xia F N;Mueller T;Lin Y M et al.Ultrafast graphene photodetector[J].Nat Nanotechn,2009,4:839.
[33] Chang Haixin;Sun Zhenhua;Ho Keith Y et al.A highly sensitive ultraviolet sensor based on a facile in situ solutiongrown ZnO nanorod/grapheme heterostructure[J].Nanoscale,2011,3(01):258.
[34] Xue-Wen Fu;Zhi-Min Liao;Yang-Bo Zhou;Han-Chun Wu;Ya-Qing Bie;Jun Xu;Da-Peng Yu .Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector[J].Applied physics letters,2012(22):223114-1-223114-4.
[35] Karthikeyan Krishnamoorthy;Rajneesh Mohan;S.-J. Kim .Graphene oxide as a photocatalytic material[J].Applied physics letters,2011(24):244101-1-244101-3.
[36] Ting Lu;Yanping Zhang;Haibo Li;Likun Pan;Yinlun Li;Zhuo Sun .Electrochemical behaviors of graphene-ZnO and graphene-SnO_2 composite films for supercapacitors[J].Electrochimica Acta,2010(13):4170-4173.
[37] Liu Xinjuan;Pan Likun;Lv Tian et al.Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(Ⅵ)[J].Catal Sci Techn,2011,1:1189.
[38] Yang Yang;Lulu Ren;Chao Zhang .Facile Fabrication of Functionalized Graphene Sheets (FGS)/ZnO Nanocomposites with Photocatalytic Property[J].ACS applied materials & interfaces,2011(7):2779-2785.
[39] Baojun Li;Huaqiang Cao .ZnO@graphene composite with enhanced performance for the removal of dye from water[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(10):3346-3349.
[40] Guilve Guo;Lei Huang;Quanhong Chang;Lechun Ji;Yang Liu;Yiqun Xie;Wangzhou Shi;Nengqin Jia .Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor[J].Applied physics letters,2011(8):083111-1-083111-3.
[41] Yi, J.;Lee, J.M.;Park, W.I. .Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors[J].Sensors and Actuators, B. Chemical,2011(1):264-269.
[42] Jin Ok Hwang;Duck Hyun Lee;Ju Young Kim .Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2011(10):3432-3437.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%