欢迎登录材料期刊网

材料期刊网

高级检索

采用CO2碳化法制备了微米级球霰石型食品级碳酸钙,探讨了碳化温度、Ca2+浓度、混合气中CO2浓度等制备工艺参数对碳酸钙晶型和形貌的影响,探讨了氨水用量、碳化时间对碳酸钙产率的影响,并采用FT-IR、XRD和SEM对制备的碳酸钙进行了表征。结果表明,碳化温度升高、混合气中CO2浓度降低,制备的碳酸钙晶型由球霰石型转变为方解石型;Ca2+浓度增加,制备的碳酸钙颗粒尺寸增大,碳化时间增加,产率先增加后减小。最佳制备条件为碳化温度20℃,Ca2+浓度0.3 mol/L,混合气中CO2浓度30%,[氨水]/2[Ca2+]摩尔比为1.1,碳化时间为24 min,制备的微米级球霰石型碳酸钙颗粒分布均匀,平均粒径为3.79μm,产率>99%,重金属含量低于国家标准《食品添加剂GB1898-2007轻质碳酸钙》的要求。

Micron-size food-grade vaterite CaCO3 were prepared by CO2 carbonization method. The effects of temperature, Ca2+ concentration and CO2 proportion in gas mixture on the morphology and polymorph of the CaCO3 crystals and influences of ammonia amount and carbonization time on the yield of CaCO3 were investigated. The microstructures and morphology of the prepared samples were systematically investigated by FT-IR, XRD and SEM. The crystal of prepared CaCO3 changed from vaterite to calcite with increasing carbonization temperature and decreasing the proportion of CO2 in gas mixture. The particle size of CaCO3 increased with increasing the concentration of Ca2+. The yield of the prepared CaCO3 increased and then decreased with prolonging the carbonization time. The average size of the prepared CaCO3 particles was 3. 79 μm with uniform particle distribution and the yield was higher than 99% at the carbonization temperature of 20 ℃, Ca2+ concentration of 0. 3 mol/L, CO2 proportion in gas mixture of 30%, [ammonia]/2[Ca2+] of 1. 1, the carbonization time of 24 min. Heavy metal content was lower than the limits of national standard "Food additive GB1898-2007 light calcium carbonate additive".

参考文献

[1] 胡庆福;胡晓湘;宋丽英.我国碳酸钙工业生产现状及发展建议[J].中国非金属矿工业导刊,2010(4):3-4,16.
[2] 唐艳军;李友明;宋晶;潘志东.纳米/微米碳酸钙的结构表征和热分解行为[J].物理化学学报,2007(5):717-722.
[3] 张强;刘永美.纳米碳酸钙的制备及其应用进展[J].化学工业与工程技术,2005(3):30-32.
[4] 夏宏宇;张群;王刚;汪小红;石娟娟;官叶斌.球形和橄榄形球霰石的简易制备研究[J].人工晶体学报,2015(6):1701-1706.
[5] 雷云.球霰石型碳酸钙的研究进展[J].长江大学学报(自然版)理工上旬刊,2014(12):35-39,43.
[6] 王向科;尹荔松.不同形态纳米碳酸钙制备及应用的研究进展[J].硅酸盐通报,2014(5):1103-1106.
[7] 曾蕾;贺全国;吴朝辉.纳米碳酸钙的制备、表面改性及应用进展[J].精细化工中间体,2009(4):1-6.
[8] Sugiura, Y.;Onuma, K.;Kimura, Y.;Tsukamoto, K.;Yamazaki, A..Acceleration and inhibition effects of phosphate on phase transformation of amorphous calcium carbonate into vaterite[J].The American mineralogist,20131(1):262-270.
[9] Li WW;Gao C.Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization[J].Langmuir: The ACS Journal of Surfaces and Colloids,20078(8):4575-4582.
[10] Chen, L.;Xu, W.-H.;Zhao, Y.-G.;Kang, Y.;Liu, S.-H.;Zhang, Z.-Y..Synthesis of vaterite and aragonite crystals using biomolecules of tomato and capsicum[J].Russian Journal of Physical Chemistry,201213(13):2071-2075.
[11] Pouget, E.M.;Bomans, P.H.H.;Dey, A.;Frederik, P.M.;De With, G.;Sommerdijk, N.A.J.M..The development of morphology and structure in hexagonal vaterite[J].Journal of the American Chemical Society,201033(33):11560-11565.
[12] Han YS;Hadiko G;Fuji M;Takahashi M.Crystallization and transformation of vaterite at controlled pH[J].Journal of Crystal Growth,20061(1):269-274.
[13] 李丽匣 .碳酸钙晶须的一步碳化法制备及应用研究[D].东北大学,2008.
[14] Kim, S.;Park, C.B..Dopamine-induced mineralization of calcium carbonate vaterite microspheres[J].Langmuir: The ACS Journal of Surfaces and Colloids,201018(18):14730-14736.
[15] Ion Udrea;Constantin Capat;Elena A Olaru.Vaterite Synthesis via Gas-Liquid Route under Controlled pH Conditions[J].Industrial & Engineering Chemistry Research,201224(24):8185-8193.
[16] Yong Sheng Han;Gunawan Hadiko;Masayoshi Fuji;Minoru Takahashi.Effect of flow rate and CO_2 content on the phase and morphology of CaCO_3 prepared by bubbling method[J].Journal of Crystal Growth,20053/4(3/4):541-548.
[17] 杨春玲 .纳米碳酸钙的制备及粒径、形貌控制[D].东华大学,2014.
[18] 汪小红;张群;董晓庆;朱万华;汪绪武.超声辅助的荔枝状球霰石的制备与表征[J].人工晶体学报,2013(10):2164-2169.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%