欢迎登录材料期刊网

材料期刊网

高级检索

为了研究纳米碳纤维( CNFs)在水溶液中的分散情况,对其进行高温纯化处理,以甲基纤维素( MC)为分散剂,制备分散良好的CNFs悬浮液.采用差热分析( DTA)和热重分析( TGA)研究了高温处理对CNFs的影响,通过测定悬浮液的紫外可见光吸光度、等温吸附曲线、zeta电位及表面张力等方法研究了MC对CNFs分散性能的影响,并讨论分析了MC对CNFs的分散机理.结果表明:MC的加入使CNFs悬浮液的zeta电位由-15.4 mV升至0,表面张力由38.87 mN/m降至36.54 mN/m;等温吸附曲线表明MC在CNFs的表面为“单阶段吸附”,当MC的质量浓度达到0.4 g/L时,MC在CNFs表面饱和吸附;当CNFs达到最佳分散状态时,MC与CNFs的质量比为2∶1.

Carbon nanofibers ( CNFs ) are easy to aggregate together. To solve this problem, CNFs were purified by high temperature treatment and stable homogenous CNF suspension was obtained by using methylcellulose ( MC) as a surfactant. The purification of CNFs and the homogenous CNF suspension were investigated by differential thermal analysis, thermo-gravimetric analysis, ultraviolet absorbency and zeta potential. Furthermore, the isotherm adsorption of MC on CNFs and surface tension of CNFs in MC solution were studied. The dispersion mechanism of CNFs in aqueous MC solution was discussed. The results showed that the zeta potentials of CNFs increased progressively from-15.4 mV to 0, and the surface tension decreased from 38.87 mN/m to 36. 54 mN/m. The isotherm adsorption of MC showed an adsorption platform, and the isotherm reached the saturation plateau at MC concentration of about 0.4 g/L. The optimum MC to CNFs ratio of 2∶1 by mass was required to achieve dispersions with maximum achievable dispersion of CNFs in the aqueous MC solution.

参考文献

[1] 赵稼祥.纳米碳纤维及其应用[J].纤维复合材料,2003(04):48-50.
[2] ZUSSMANE,CHENX,DINGW,et al.Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers [J]. Carbon, 2005, 43 (10):2175-2185.,2005.
[3] ZHOU Zhengping,LAI Chuilin,ZHANG Lifeng,et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties [J]. Polymer, 2009, 50 (13):2999-3006.,2009.
[4] CELEBIS,NIJHUISTA,Van Der SCHAAFJ,etal. Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells [J]. Carbon, 2011, 49 (2):501-507.,2011.
[5] FU Jiapeng,QIAO Hui,LI Dawei,et al.Laccase biosensor based on electrospun copper/carbon composite nanofibers for catechol detection [J]. Sensors, 2014, 14(2):3543-3556.,2014.
[6] XING Zhicai,ASIRIAM,OBAIDAY,etal.Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries [J]. RSC Advances, 2014, 4(18):9061-9063.,2014.
[7] 郑俊生,张新胜,李平,袁渭康.微结构对纳米碳纤维氧阴极还原性能影响[J].同济大学学报(自然科学版),2011(08):1193-1197.
[8] ZHANG G,WUH B,HOSTERHE,et al.Strongly coupled carbon nanofiber-metal oxide coaxial nanocables with enhanced lithium storage properties [J]. Energy & Environmental Science, 2014, 7(1):302-305.,2014.
[9] 高迪,彭立敏, MO Y L. 纳米碳纤维混凝土力学性能的试验研究[J]. 铁道科学与工程学报,2011, 8 (3):18-24. GAO Di, PENG Limin, MO Y L. Experimental study on mechanical properties of carbon nanofiber concrete [J]. Journal of Railway Science and Engineering, 2011, 8(3):18-24.,2011.
[10] GAY C, SANCHEZ F. Performance of carbon nanofi-ber-cement composites with a high-range water reducer [J]. Transportation Research Board of the National A-cademies, 2010, 2142:109-113.,2010.
[11] YAZDANBAKHSH A, GRASLEY Z, TYSON B, et al. Dispersion quantification of inclusions in composites [J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(1):75-83.,2011.
[12] YAZDANBAKHSH A, GRASLEY Z, TYSON B, et al. Distribution of carbon nanofibers and nanotubes in cementitious composites [J]. J Transport Res Boa, 2010, 2142:89-95.,2010.
[13] MODI S H, DIKOVICS K B, GEVGILILI H, et al. Nanocomposites of poly (ether ether ketone) with carbon nanofibers:effects of dispersion and thermo-oxidative degradation on development of linear viscoelasticity and crystallinity [J]. Polymer, 2010, 51:5236-5244.,2010.
[14] TYSON B M, RASHID K, YAZDANBAKHSH A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials [J]. Journal of Materials in Civil Engineering, 2011, 23(7):1028-1035.,2011.
[15] CWIRZEN A, HABERMEHL-CWIRZEN K, PENT-TALA V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites [J]. Advances in Cement Research, 2008, 20(2):65-73.,2008.
[16] WANG Baomin, HAN Yu, ZHANG Tingting. Morpho-logical properties of surface-treated carbon nanotubes in cement-based composites [J]. Journal of Nano-science and Nanotechnology, 2012, 12(11):8415-8419.,2012.
[17] WANG Baomin,HAN Yu,PAN Baofeng,ZHANG Tingting.Mechanical and Morphological Properties of Highly Dispersed Carbon Nanotubes Reinforced Cement Based Materials[J].武汉理工大学学报(材料科学版)(英文版),2013(01):82-87.
[18] LEE K J, YOON S H, JANG J. Carbon nanofibers:a novel nanofiller for nanofluid applications [J]. Small, 2007, 3(7):1209-1213.,2007.
[19] DOSHI J, RENEKER D H. Electrospinningprocess and applications of electrospun fibers [J]. Journal of Electrostatics, 1995, 35(2/3):151-160.,1995.
[20] WANG B, HAN Y, SONG K, et al. The use of anionic gum arabic as a dispersant for multi-walled carbon nanotubes in an aqueous solution [J]. J Nanosci Nanotech, 2012, 12(6):4664-4669.,2012.
[21] LI Ying, HU Yi, LU Yao, et al. One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries [J]. Journal of Power Sources, 2014, 254:33-38.,2014.
[22] LU Haibao, LIANG Fei, YAO Yongtao, et al. Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite [J]. Composites Part B-Engineering, 2013, 59:191-195.,2013.
[23] CHATTERJEE T, YUREKLI K, HADJIEV V G, et al. Single-walled carbon nanotube dispersions in poly (ethylene oxide) [J]. Advanced Functional Materials, 2005, 15(11):1832-1838.,2005.
[24] CAMPONESCHI E, FLORKOWSKI B, VANCE R, et al. Uniform directional alignment of single-walled carbon nanotubes in viscous polymer flow [J]. Langmuir, 2006, 22(4):1858-1862.,2006.
[25] 窦文龄,辛霞,徐桂英.两亲分子对碳纳米管的分散稳定作用[J].物理化学学报,2009(02):382-387.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%