从金属硅化物的物理及力学性能出发指出了影响其应用的最大障碍是室温脆性,分析了金属硅化物的强韧化手段和机理,认为复合化是目前有效的强韧化方法,最后列举了金属硅化物常用的几种制备技术及其各自的优势和缺点,并且以MoSi_2为例综述了金属硅化物的应用现状.
Beginning with the physical and mechanical properties of metal silicides, the view that room tempera-ture brittleness is the main obstacle preventing the materials from industrial applications is put forword. The viewpoint that compositing is the most effective strengthening and toughening approach of metal silicides is concluded through analyzing the strengthening and toughening means and mechanism. The advantages and disadvantages of several fabri-cation processes and approaches of metal silicides are discussed and the application status of metal silicides, such as MoSiz, is reviewed.
参考文献
[1] | Sadananda K;Mitra R;Deevi SC;Feng CR .Creep and fatigue properties of high temperature silicides and their composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1/2):223-238. |
[2] | 丁旭,郭喜平.新型铌-硅基共晶自生复合材料的研究进展[J].材料导报,2003(11):60-62,46. |
[3] | Krakhmalev P V et al.Tribological behavior and wear mechanisms of MoSi_2-base composites sliding against AA6063 alloy at elevated temperature[J].Wear,2006,260(4-5):450. |
[4] | 易丹青,杜若昕,曹昱.M5Si3型硅化物的研究及相关的物理冶金学问题[J].金属学报,2001(11):1121-1130. |
[5] | L. Zhang .Ti5Si3 and Ti5Si3-based alloys: alloying behavior, microstructure and mechanical property evaluation[J].Acta materialia,1998(10):3535-3546. |
[6] | Rosales I.;Schneibel J.H. * .Stoichiometry and mechanical properties of Mo_3Si[J].Intermetallics,2000(8):885-889. |
[7] | 张小立,吕振林,金志浩.MoSi2金属间化合物复合材料的强韧化机理及其制备技术[J].中国钼业,2002(03):29-33. |
[8] | N. Vellios;P. Tsakiropoulos .The role of Fe and Ti additions in the microstructure of Nb-18Si-5Sn silicide-based alloys[J].Intermetallics,2007(12):1529-1537. |
[9] | Lai Z H;Yi D Q;Li C H .Precipitation of Mo_9FeSi_6 in MoSi_2[J].Scripta Metallurgica et Materialia,1994,31(07):815. |
[10] | Yeh C L;Hsu C C .An experimental study on Ti_5Si_3 formation by combustion synthesis in self-propagating mode[J].Journal of Alloys and Compounds,2005,395(1-2):53. |
[11] | 吴鹤,韩雅芳,陈熙琛.钇对Ti-Ti5Si3共晶合金微观组织和力学性能的影响[J].中国航空学报(英文版),2005(02):171-174. |
[12] | Kajuch J;Rigney J D;Lewandowski J J .Processing and properties of Nb_5Si_3 and tough Nb_5Si_3/Nb laminates[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1992,155(1-2):59. |
[13] | 李建林,江东亮,谭寿洪.MoSi2与B4C反应合成复合材料的显微结构及力学性能研究[J].应用科学学报,1999(04):395-399. |
[14] | Kristoffer Krnel;Diletta Sciti;Alida Bellosi .Influence of long term oxidation on the microstructure, mechanical and electrical properties of pressureless sintered AlN-SiC-MoSi_2 ceramic composites[J].Journal of the European Ceramic Society,2003(16):3135-3146. |
[15] | 杨光义,高明霞,潘颐.熔渗法制备SiC/FexSiy复合材料显微结构和性能[J].复合材料学报,2005(01):41-46. |
[16] | 李爱兰,曾燮榕,李贺军,李龙,熊信柏.Nb增韧MoSi2基复合材料的研究进展[J].材料工程,2002(02):6-9,26. |
[17] | Tiwari R et al.Vacuum plasma spraying of MoSi_2 and its composites[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1992,155(1-2):95. |
[18] | 易丹青.MoSi2基复合材料的研究进展[J].中国钼业,2006(04):3-12. |
[19] | Meng JH;Lu JJ;Wang JB;Yang SR .Preparation and properties of MOSi2 composites reinforced by TiC, TiCN, and TiB2[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):277-284. |
[20] | Suzuki Y;Sekino T;Niihara K .Effects of ZrO_2 addition on microstructure and mechanical properties of MoSi_2[J].Scripta Metallurgica et Materialia,1995,33(01):69. |
[21] | Yamauchi A;Yoshimi K;Kurokawa K et al.Synthesis of Mo-Si-B in situ composites by mechanical alloying[J].Journal of Alloys and Compounds,2007,434-435:420. |
[22] | Yeh C L;Chen W H;Hsu C C .Formation of titanium silicides Ti_5Si_3 and TiSi_2 by self-propagating combustion synthesis[J].Journal of Alloys and Compounds,2007,432(1-2):90. |
[23] | 谢明;刘建良;邓忠民 等.粉末冶金快速凝固技术与材料[J].云南冶金,2000,29(03):26. |
[24] | 王华明,张凌云,李安,蔡良续,汤海波,吕旭东.先进材料与高性能零件快速凝固激光加工研究进展[J].世界科技研究与发展,2004(03):27-31. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%