蜘蛛丝尤其是纺自大壶状腺的拖牵丝,具有独特的机械性能,是自然界颇具应用潜力的生物材料.研究已表明作为大壶状腺丝特征反应的超收缩现象与其机械性能之间会相互影响,且通过控制超收缩及湿拉伸,可以再现蛛丝的机械性能.因此,探明超收缩过程的机制是蛛丝研究及应用中重要的一环.本文使用三种方式(短时间浸润-干燥,长时间浸润-干燥,浸润-干燥-拉伸)循环处理悦目金蛛拖牵丝,并测量其收缩率的变化,发现短时间浸润-干燥(收缩率=78+2%)交替处理比长时间浸润一干燥(72±1%)处理更有效地促进拖牵丝的收缩;干燥后拉伸(收缩率-75±1%)可阻碍蛛丝的进一步超收缩(未拉伸收缩率=8212±2%).用原子力显微镜观察超收缩前后的表面形貌变化,发现收缩后的拖牵丝比原始丝更光滑.有两种可能的分子机制解释干燥与拉伸对拖牵丝超收缩性能的影响.
参考文献
[1] | Mayes EL.;Mann S.;Vollrath F. .Fabrication of magnetic spider silk and other silk-fiber composites using inorganic nanoparticles[J].Advanced Materials,1998(10):801-805. |
[2] | Hu X;Vasanthavada K;Kohler K;McNary S;Moore AMF;Vierra CA .Molecular mechanisms of spider silk[J].Cellular and molecular life sciences: CMLS,2006(17):1986-1999. |
[3] | Gosline JM;Guerette PA;Ortlepp CS;Savage KN;Altringham JD (ed.);Ellington CP .The mechanical design of spider silks: from fibroin sequence to mechanical function[J].The Journal of Experimental Biology,1999(23):3295-3303. |
[4] | Cheryl Y. Hayashi;Nichola H. Shipley;Randolph V. Lewis .Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins[J].International Journal of Biological Macromolecules: Structure, Function and Interactions,1999(2/3):271-275. |
[5] | Thiel BL.;Viney C.;Guess KB. .NON-PERIODIC LATTICE CRYSTALS IN THE HIERARCHICAL MICROSTRUCTURE OF SPIDER (MAJOR AMPULLATE) SILK[J].Biopolymers: Original Research on Biomolecules and Biomolecular Assemblies,1997(7):703-719. |
[6] | Frische S.;Vollrath F.;Maunsbach AB. .Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy[J].Journal of Microscopy,1998(Pt.1):64-70. |
[7] | D. T. Grubb;Gending Ji .Molecular chain orientation in supercontracted and re-extended spider silk[J].International Journal of Biological Macromolecules: Structure, Function and Interactions,1999(2/3):203-210. |
[8] | Z. Shao;F. Vollrath;J. Sirichaisit;R.J. Young .Analysis of spider silk in native and supercontracted states using Raman spectroscopy[J].Polymer: The International Journal for the Science and Technology of Polymers,1999(10):2493-2500. |
[9] | Yang ZT.;Seidel A.;LaVerde G.;Zax DB.;Jelinski LW.;Liivak O. .Supercontraction and backbone dynamics in spider silk: C-13 and H-2 NMR studies[J].Journal of the American Chemical Society,2000(37):9019-9025. |
[10] | Lynn W. Jelinski;Amy Blye;Oskar Liivak;Carl Michal;George La Verde;Andreas Seidel;Neeral Shah;Zhitong Yang .Orientation, structure, wet-spinning, and molecular basis for supercontraction of spider dragline silk[J].International Journal of Biological Macromolecules: Structure, Function and Interactions,1999(2/3):197-201. |
[11] | J.Perez-Rigueiro;M.Elices;G.V.Guinea .Controlled supercontraction tailors tne tensile behaviour of spider silk[J].Polymer: The International Journal for the Science and Technology of Polymers,2003(13):3733-3736. |
[12] | Zhengzhong Shao;Fritz Vollrath .The effect of solvents on the contraction and mechanical properties of spider silk[J].Polymer: The International Journal for the Science and Technology of Polymers,1999(7):1799-1806. |
[13] | Ken N.Savage;Paul A.Guerette;John M.Gosline .Supercontraction Stress in Spider Webs[J].Biomacromolecules,2004(3):675-679. |
[14] | G.V.Guinea;M.Elices;J.Perez-Rigueiro;G.Plaza .Self-tightening of spider silk fibers induced by moisture[J].Polymer: The International Journal for the Science and Technology of Polymers,2003(19):5785-5788. |
[15] | Manuel Elices;Jose Perez-Rigueiro;Gustavo R. Plaza .Finding Inspiration in Argiope Trifasciata Spider Silk Fibers[J].JOM,2005(2):60-66. |
[16] | Elices M;Perez-Rigueiro J;Plaza G;Guinea GV .Recovery in spider silk fibers[J].Journal of Applied Polymer Science,2004(6):3537-3541. |
[17] | PAN Zhi-juan,MIURA Mikihiko,MORIKAWA Hideaki,IWASA Masayuki,LIU Min.Morphology and Microstructure of Spider Dragline Silk from Araneus Ventricosus[J].东华大学学报(英文版),2005(01):73-77. |
[18] | 潘志娟,朱美男.原子力显微镜下蚕丝及蜘蛛丝的微观结构[J].材料科学与工程学报,2005(03):365-368. |
[19] | 刘敏,潘志娟,李春萍.成丝的速度与方式和蜘蛛丝力学性能的关系[J].东华大学学报(自然科学版),2005(05):11-15. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%