采用实验的方法研究了栅中水翼的空化水动力特性.实验在空化水洞中完成,采用高速摄像技术观测了不同空化阶段的空穴形态,并测量了栅中水翼所受的升阻力.结果表明:在空化没有发生时,栅中水翼所受升阻力随雷诺数的增加而增大;当空化产生时,不同的雷诺数下栅中水翼空化动力特性随a/2a的变化趋势一致;在相同的雷诺数下,当4>σ/2α>2.8时,栅中水翼升力系数变化的频率基本不随σ/2α改变,最大空穴长度小于水翼弦长,此时St=0.11;当σ/2α<2.8时,栅中水翼升力系数变化的频率增加,对应的St=0.28.
参考文献
[1] | Y. Kawanami;H. Kato;H. Yamaguchi;M. Tanimura;Y. Tagaya .Mechanism and control of cloud cavitation[J].Journal of Fluids Engineering: Transactions of the ASME,1997(4):788-794. |
[2] | De Bernardi J;Joussellin F.Experimental Analysis of Instabilities Related to Cavitation in Turbopump Inducer[A].,1993:91-99. |
[3] | Guoyu Wang;Inanc Senocak;Wei Shyy .Dynamics of attached turbulent cavitating flows[J].Progress in aerospace sciences,2001(6):551-581. |
[4] | Kjeldsen Morten .Spectral Characteristics of Sheet/Cloud Cavitation[J].Journal of Fluids Engineering: Transactions of the ASME,2000(3):481-487. |
[5] | 王国玉,方韬,曹树良,韩占忠,Ikohagi Toshiaki.非定常粘性空化流动模型及其数值计算[J].工程热物理学报,2004(05):783-785. |
[6] | Callenaere M;Franc J P;Michel J M.Influence of Cavity Thickness and Pressure Gradient on the Unsteady Behaviour of Partial Cavities[A].Grenoble,France,1998 |
[7] | Kawanami Y;Kato H;Yamaguchi H et al.Mechanism and Control of Cloud Cavitation[J].Journal of Fluids Engineering,1997,119:788-795. |
[8] | Lohrberg H.;Stoffel B.;Fortes-Patella R.;Coutier-Delgosha O.;Reboud JL. .Numerical and experimental investigations on the cavitating flow in a cascade of hydrofoils[J].Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow,2002(4):578-586. |
[9] | Coutier-Delgosha O;Reboud J L;Albano G .Numerical Simulation of the Unsteady Cavitating Behaviour of an Inducer Blade Cascade[Boston ASME FEDSM00][R].,2000. |
[10] | 张博,王国玉,李向宾,韩占忠.绕水翼片状空化流动结构的数值与实验研究[J].工程热物理学报,2008(11):1847-1851. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%