目的确定AZ91 D镁合金表面激光熔覆Al-Cu合金的最佳工艺参数。方法利用有限元软件ANSYS建立移动高斯热源作用下的温度场三维模型,对不同参数下激光熔覆过程中的温度场进行动态模拟,确定工艺参数。结果熔池中心的温度随着激光功率的增大而增大,随着热源移动速度和光斑直径的增大而减小。温度过高时,熔覆层下塌且内部出现裂纹;温度过低时,熔覆层上有大量的金属颗粒且内部含有夹杂物。结论当功率为240 W、扫描速度为2.5 mm/s、光斑直径为0.6 mm时,熔池中心的温度约为1100℃,熔覆层与基体接触面的温度约为700℃。在此参数下得到了表面成形光滑且与基体结合紧密的致密熔覆层。
ABSTRACT:Objective To get the optimal technological parameters for Al-Cu alloy cladded coatings on AZ91D magnesium alloy prepared by laser cladding. Methods The three-dimensional temperature field model of laser cladding under the moving GUASS heat source was established with ANSYS software. Then, the dynamic simulation of temperature field for laser cladding was conduc-ted under different technological parameters. And the technological parameters were optimized by contrasting the melting point of Al-Cu alloy and the welding pool temperature. Finally, the experimental verification was performed. Results The results showed that the temperature at the center of welding pool increased with the rise of power ( P) while decreased with the rise of the speed ( v) of heat source and the diameter( d) of facula. When the temperature was excessively high, the cladding layer was collapsed and with internal cracks. However, when the temperature was too low, the cladding layer was covered with large amount of metal particles, and there were internal inclusions. Conclusion Under the conditions of P=240 W, v=2. 5 mm/s and d=0. 6 mm, the temperature at the center of welding pool was about 1100 ℃, and the temperature at the contact surface of cladding and substrate was 700 ℃. The smooth and compact cladding layer cohesively combined with substrate was obtained by experiment with those technological parameters.
参考文献
[1] | 肖红军,彭云,马成勇,田志凌.激光表面改性[J].表面技术,2005(05):10-12. |
[2] | 王彬,苏艳.铝合金大气腐蚀行为及其防腐措施研究进展[J].装备环境工程,2012(02):64-68. |
[3] | 曹亚男,张艳梅,揭晓华,曾鹏.镁合金表面激光熔覆的研究现状[J].材料导报,2011(09):99-102. |
[4] | 梁义,魏世丞,刘毅,王玉江,徐滨士.Zn-Al和Al-RE热喷涂涂层的耐蚀性研究[J].装备环境工程,2010(06):171-174. |
[5] | 张松,张春华,张宁,于莉丽,刘常升,Man H C3.6061铝合金表面激光熔覆温度场的模拟与验证[J].焊接学报,2007(10):1-4. |
[6] | 郑丽娟,李燕,何大川,付学中,付宇明.激光多道熔覆温度场及熔覆层组织分析[J].红外与激光工程,2013(z1):52-57. |
[7] | 毕晓勤,杨仲磊.40Cr合金表面等离子熔覆温度场的数值模拟[J].中国表面工程,2009(03):43-48. |
[8] | 姜伟,胡芳友,黄旭仁.工艺参数对激光熔覆层微观形貌的影响[J].表面技术,2007(04):57-58,75. |
[9] | 徐建林,于涛,杨波,龙大伟.工艺参数对铝青铜表面激光熔覆镍基合金温度场的影响[J].机械工程材料,2011(01):93-96,99. |
[10] | 陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999 |
[11] | 范雪燕,石娟,吴钢.激光表面淬火瞬态温度场在ANSYS中的模拟[J].上海金属,2005(03):31-35. |
[12] | 方洪渊.焊接结构学[M].北京:机械工业出版社,2008 |
[13] | 马琳,原津萍,张平,赵军军.多道激光熔覆温度场的有限元数值模拟[J].焊接学报,2007(07):109-112. |
[14] | PHATAK K M .Modeling of Laser Cladding with Power In-jection[J].Metallurgical and Materials Transactions,2004,35(B):1139-1150. |
[15] | 李绍杰,范兴娟,姚晓亮,樊一丁,张杰,刘其斌.高温合金激光熔覆过程温度场的数值模拟[J].热加工工艺,2007(19):76-79. |
[16] | 项坤,王维,杨光,卞宏友,钦兰云,王伟,尚纯,崔宝磊.钛合金单道激光熔覆工艺的研究[J].表面技术,2013(01):91-93,104. |
[17] | 曹艳,李涌泉,褚芳芳.45钢表面Ni20合金激光熔覆层的组织及抗高温氧化性能[J].表面技术,2012(03):54-56. |
[18] | 高亚丽,杨淼,张海波,王存山.激光功率对Al-Cu合金熔覆层组织和性能的影响[J].应用激光,2011(02):107-111. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%