欢迎登录材料期刊网

材料期刊网

高级检索

在5 K/mm温度梯度下,在不同的下拉速率(1~50 mm/min)下对成分为Al-1.0%Ni-3.0%Y(摩尔分数)三元共晶合金进行下拉定向凝固。通过光学显微镜(OM)、扫描电子显微镜(SEM)观察横纵截面的组织,研究定向凝固后合金组织的变化规律;应用MIAPS软件和定量金相法定量分析合金组织中各组成相及共晶团的尺寸、体积分数以及共晶层片间距等形貌特征参数随凝固条件(v)的变化。结果表明:定向凝固后,合金组织定向生长特征明显;随着下拉速率的增加,Al-Ni-Y三元共晶合金组织由1 mm/min时的α(Al)+Al3Y+Al23Ni6Y4三相共晶组织逐渐转变为下拉速率5 mm/min以上时的α(Al)+Al3Y相组成的菊花状共晶和α(Al)+Al23Ni6Y4相组成规则层片状共晶所组成的两个两相共晶组织;当下拉速率增加到50 mm/min时,完整的菊花状共晶组织特征消失,组织破碎细化,转变为α(Al)+Al 3

In order to research the microstructure variation of the Al-Ni-Y ternary alloy with puling-down rates and observe the structure by the optical microscopy (OM) and scanning electronic microscopy (SEM), the upward directional solidification of the alloy with chemical composition of Al-1.0%Ni-3.0%Y (mole fraction) was carried out at the constant temperature gradient of 5 K/mm and different pulling-down rates (1?50 mm/min). The characteristic parameters of the alloy structure, such as the volume fractions and size of each phase and eutectic structure, and the eutectic lamellar spacing were analyzed quantitatively by quantitative metallography and MIAPS software. The results show that the microstructure of the alloy behaves obvious characteristics of directional growth after it is directionally solidified. With the increase of pulling-down rates, the gradual transformation of the microstructure of Al-Ni-Y ternary eutectic alloy transforms fromα(Al)+Al 3Y+Al23Ni6Y4 ternary eutectic at the pulling-down rate of 1 mm/min to two eutectics consisted of theα(Al)+Al3Y phase irregular chrysanthemum-like eutectic andα(Al)+Al23Ni6Y4 regular lamellar eutectic at the pulling down rate of more than 5 mm/min. When the pulling-down rate increases to 50 mm/min, the complete chrysanthemum- like eutectic structure gradually crushes and transforms intoα(Al) and Al3Y phase dendritic eutectic. The mathematical relationships among the characteristic parameters and pulling down rates are unambiguous.

参考文献

[1] RAGGIO R, BORZONE G, FERRO R. The Al-rich region in the Y-Ni-Al system:microstructures and phase equilibra[J]. Intermetallics, 2000, 8(3):247-257.,2000.
[2] VASILIEV A L, AINDOW M, BLACKBURN M J, WATSON T J. Phase stability and microstructure in devitrified Al-rich Al-Y-Ni alloys[J]. Intermetallics, 2004, 12(4):349-362.,2004.
[3] 杨春雷,郑立静,李岩,周磊,张虎.抽拉速率对定向凝固Ni-45Ti-5Al合金微观组织的影响[J].中国有色金属学报,2011(11):2763-2768.
[4] 张建飞,沈军,商昭,王雷,傅恒志.定向凝固NiAl-9Mo共晶合金的凝固组织特性[J].中国有色金属学报(英文版),2013(12):3499-3507.
[5] SEIKI S, HAYASHI A, OKAMOTO H, LZUMI T, SHIOHARA Y. Critical current properties in magnetic fields of YBCO superconducting rods prepared by unidirectional solidification method[J]. Physica C:Superconductivity, 2004, 412/414:963-966.,2004.
[6] 李旭,任忠鸣,任维丽,李喜,钟云波,邓康,董建文,陈超.纵向磁场作用下DZ417G高温合金的枝晶生长行为[J].中国有色金属学报,2010(10):1913-1921.
[7] SHENG Li-yuan, YANG Fang, XI Ting-fei, ZHENG Yu-feng, GUO Jian-ting. Microstructure and room temperature mechanical properties of NiAl-Cr(Mo)-(Hf, Dy)hypoeutectic alloy prepared by injection casting[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):983-990.,2013.
[8] SU Hai-jun,ZHANG Jun,LIU Lin,FU Heng-zhi.Effects of laser processing parameters on solidification microstructures of ternary Al_2O_3/YAG/ZrO_2 eutectic in situ composite and its thermal property[J].中国有色金属学报(英文版),2009(06):1533-1538.
[9] HECHT U, GRANAY L, PUSZTAI T, BOTTGERA B, APELA M, WITUSIEWICZA V, RATKEC L, de WILDED J, FROYEND L, CAMELE D, DREVETE B, FAIVREF G, FRIESA S G, LEGENDREG B, REXA S. Multiphase solidification in multicomponent alloys[J]. Materials Science and Engineering R, 2004, 46:1-49.,2004.
[10] 刘兵,彭超群,王日初,王小锋,李婷婷.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010(09):1705-1715.
[11] 肖军.浅析汽车铝合金铸造的工艺性能[J].铝加工,2013(02):48-57.
[12] 吴强,司乃潮,郭毅,李达云.定向凝固Al-4.5%Cu合金枝晶组织与抽拉速率的关系[J].中国有色金属学报, 2007, 17(7):1101-1106. WU Qiang, SI Nai-chao, GUO Yi, LI Da-yun. Relationship between primary dendrite arm spacing of Al-4.5%Cu alloy and withdrawal rate during unidirectional solidification[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(7):1101-1106.,2007.
[13] 时海芳,吴冰,徐瑞.Al-Ni-Y三元合金不同拉伸速率的定向凝固组织[J].热加工工艺,2009(11):15-17,20.
[14] 刘艳,彭志方.多相合金组成相结构体积分数及相含量之间关系的测算[J].金属学报,2003(01):22-26.
[15] 王桂棠,邓耀华,吴黎明.基于数字图像处理技术的金相组织定量分析[J].金属热处理,2006(02):66-70.
[16] XU Jian-lin, WANG Zhi-ping, CHEN Chao. Neural network model in predicting mechanical properties of ductile iron[J]. Transactions of the American Foundry Society, 2002, 110:11-18.,2002.
[17] 秦国友.定量金相[M].成都:四川科学技术出版社, 1987:4-16. QIN Guo-you. Quantitative metallography[M]. Chengdu:Sichuan Science & Technology Press, 1987:4-16.,1987.
[18] 王晓书,苑玉婷,张静,徐瑞.定向凝固Al-Ni-Y三元共晶合金的相组成与凝固特征[J].中国稀土学报,2010(04):448-453.
[19] JACKSON K A, HUNT J D. Lamellar and rod eutectic growth[J]. Dynamics of Curved Fronts, 1988:363-376.,1988.
[20] 刘俊明,刘治国,孟祥康,吴状春.凝固界面临界分叉--Sn-Pb共晶定向凝固几何模型[J].材料科学与工艺, 1994, 2(2):50-55. LIU Jun-ming, LIU Zhi-guo, MENG Xiang-kang, WU Zhuang-chun. Critical splitting of the solidifying interface-the geometric model of the Sn-Pb eutectic during directional solidification[J]. Materials Science and Technology, 1994, 2(2):50-55.,1994.
[21] KIM Y W. Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy[J]. Acta Metallurgica et Materialia, 1992, 40(6):1121-1134.,1992.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%