欢迎登录材料期刊网

材料期刊网

高级检索

By means of differential scanning calorimeter (DSC) measurements, the thermal stability of an amorphous Fe80B20 alloy after various periods of low-energy ball milling has been studied. The results indicate that the thermal stability of the amorphous Fe80B20 ribbons can be enhanced upon mechanical deformation with a low milling intensity. The crystallization temperature T-p, the crystallization enthalpy Delta H, and the crystallization activation energy E(x) increase with milling time. The above observations will be compared with our previous findings that extensive mechanical deformation with a high milling intensity can otherwise induce a structural relaxation in an amorphous Fe80B20 alloy. Based on conventional thermodynamic and kinetic arguments, a reasonable interpretation will be made to explain the enhanced thermal stability of the amorphous Fe80B20 alloy after mechanical deformation. (C) 1996 American Institute of Physics.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%