欢迎登录材料期刊网

材料期刊网

高级检索

根据梯度增强的Johnson-Cook模型,对Ti-6Al-4V绝热剪切带中心区域的宽度(绝热剪切带宽度w5%)随平均塑性剪切应变的演变规律进行了预测.结果表明,随着平均塑性剪切应变的增加,w5%先是快速减小,然后趋于稳定.当绝热剪切带总宽度为0.3235 mm时,w5%的稳定值接近Ti-6Al-4V绝热剪切带宽度的上限(55 μm);当绝热剪切带总宽度为0.0705 mm时,w5%的稳定值接近Ti-6Al-4V绝热剪切带宽度的下限(12 μm).绝热剪切带宽度受多种因素影响,例如,材料特性、加载速度、环境温度、应力及应变状态.本文的分析是在绝热条件下进行的,不存在塑性功率与热传导达到平衡(稳态)的假定.

According to the gradient-enhanced Johnson-Cook model to investigate the evolution of the ASB width (w5%) with the average plastic shear strain for Ti-6Al-4V alloy. Results show that w5% decreases rapidly and then approaches a constant with the increasing of average plastic shear strain. When the total width of the ASB is 0.3235 mm, the critical value of w5% approaches the upper bound (55 μm) measured for Ti-6Al-4V, while when the total width of the ASB is 0.0705 mm, the critical value of w5% approaches the lower bound (12 μm). It is found that the ASB width is influenced by many factors such as material properties, loading rate, ambient temperature, stress and strain states. In the paper, the key assumption of the balance of heat diffusion and plastic work is not adopted and the present analysis is in adiabatic condition.

参考文献

[1] 胡文英,邓炬,谢丽英.Ti-15-3合金薄靶板弹坑断口特征及绝热剪切破坏[J].稀有金属材料与工程,1993(03):38-42.
[2] 陈军;赵永庆;杨海瑛 .[J].材料热处理,2006,35(22):17.
[3] 杨扬,程信林,李正华,莫文剑,高文柱,裴大荣.冶金因素影响绝热剪切带形成的金相观察[J].稀有金属材料与工程,2003(04):261-263.
[4] 曾卫东,周义刚,舒滢,赵永庆,杨锦,张学敏.基于加工图的Ti-40阻燃钛合金热变形机理研究[J].稀有金属材料与工程,2007(01):1-6.
[5] 李鑫,鲁世强,王克鲁,傅铭旺,李臻熙,曹春晓.基于Murty判据的Ti-6.5Al-3.5Mo-1.5Zr-0.3Si钛合金α+β相区热变形机制及工艺优化[J].稀有金属材料与工程,2008(04):577-583.
[6] Liao SC.;Duffy J. .Adiabatic smear bands in a Ti-6Al-4V titanium alloy[J].Journal of the Mechanics and Physics of Solids,1998(11):2201-2231.
[7] Me-Bar Y;Shechtman D .[J].Materials Science and Engineering,1983,58:181.
[8] Timothy S P;Hutchings I M .[J].Acta Metallurgica,1985,33:667.
[9] 徐天平;王礼立;卢维娴 .[J].爆炸与中击,1987,7(01):1.
[10] 王学滨.Ti-6Al-4V绝热剪切带的厚度及应变率效应研究[J].稀有金属材料与工程,2009(02):214-218.
[11] Batra R C;Kim C H .[J].International Journal of Engineering Science,1991,29(08):949.
[12] Xu Y B;Liu L;Yu J Q et al.[J].aterials Science and Technology,2000,16:609.
[13] Xu Y B;Zhong W L;Chen Y J .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,A 299(1-2):287.
[14] Wang X B .[J].Transactions of Nonferrous Metals Society of China,2006,16(02):333.
[15] Wang X B .[J].Transactions of Nonferrous Metals Society of China,2006,16(06):1362.
[16] Wang X B .[J].Transactions of Nonferrous Metals Society of China,2007,17(04):698.
[17] Daridon L;Oussouaddi O;Ahzi S .Influence of the material constitutive models on the adiabatic shear band spacing: MTS, power law and Johnson-Cook models[J].International Journal of Solids and Structures,2004(11/12):3109-3124.
[18] Wang X B .[J].Key Engineering Materials,2007,345-346:133.
[19] Dodd B;Bai Y .[J].Materials Science and Technology,1985,1(01):38.
[20] 王学滨 .[J].稀有金属材料与工程,2006,35(z1):123.
[21] Wang X B .[J].Solid State Phenomena,2008,138:385.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%