欢迎登录材料期刊网

材料期刊网

高级检索

The effects of hydrogen and strain rate on the mechanical properties and fracture mechanism of 8090 Al-Li alloy under electrochemical charging conditions have been studied. Experimental results demonstrate that the tensile strength [ultimate tensile strength (UTS) and yield strength (YS)] and plasticity [reduction of area (RA) and elongation (EL)] drop linearly with the decrease of strain rate. The charged hydrogen increases the tensile strength but markedly impair the plasticity. The susceptibility of hydrogen embrittlement increases with the decreases of strain rate, and the susceptibility of the charged specimens was larger than that of the uncharged ones over the strain-rate range. Observation by scanning electron microscope (SEM) reveals that the charged hydrogen enhances intergranular delamination cracking on the fracture surface. The fracture model of charged specimens at low strain rates (epsilon < 3.4 x 10(-4)/s) is grain boundary brittle fracture (GBBF), while that of other conditions is grain boundary ductile fracture (GBDF). Secondary ion mass spectroscopy (SIMS) study shows that the atomic binding energy of Al and Li in the alloy decreased after hydrogen charging, and the atomic binding energy drop of the former is more than the latter. In this article, the hydrogen transport through the mobile dislocation mechanism of hydrogen-induced fracture and the hydrogen effect on atomic binding energy were also discussed in detail.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%