研究了熔融纺丝法聚氨酯(PU)系中空纤维膜的压力响应性.结合σ-λ曲线,采用二参数Mooney-Rivlin模型对后拉伸8倍中空纤维膜的压力响应性进行了有限元模拟.结果表明,所得模型在透膜压力低于0.1MPa时与实测数据吻合较好,而高于0.1MPa时与实测数据出现较大差异.分析结果表明,当透膜压力高于0.1MPa时,中空纤维膜在压力响应过程中在微孔孔径发生改变的同时孔数量也发生了变化.
The pressure responsibility of the PU-based hollow fiber membrane was studied. According to the σ-λ curves, the finite element simulation of the pressure responsibility of the hollow fiber membrane after stretching 8 times was done using the two-parameter Mooney-Rivlin model. Results showed that the theoretical curve matched the real one under 0.1PMa while the real one became much higher after 0.1MPa. It could be analyzed that during pressure responsible processes, both the quantities and the size of the microvoids changed when the trans-pressure was more than 0.1MPa.
参考文献
[1] | N. Reber;A. Kuchel;R. Spohr;A. Wolf;M. Yoshida .Transport properties of thermo-responsive ion track membranes[J].Journal of Membrane Science,2001(1):49-58. |
[2] | Chu L Y;Park S H;Yamaguchi T et al.[J].Journal of Membrane Science,2001,192(1-2):27-39. |
[3] | Mulder M.Basic Principles of Membrane Technology[M].the Netherlands:Kluwer Academic,1991:153. |
[4] | Brower D I.An Introduction to Polymer Physics[M].Cambridge:Cambridge University Press,2002:162-185. |
[5] | Charlton D J;Yang J .[J].Rubber Chemistry and Technology,1994,67(03):481-503. |
[6] | Tabaddor F .[J].Rubber Chemistry and Technology,1987,60(05):957-965. |
[7] | 任全彬,蔡体敏,安春利,宋金松,刘中兵.硅橡胶"O"形密封圈Mooney-Rivlin模型常数的确定[J].固体火箭技术,2006(02):130-134. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%