利用溶胶-凝胶法(sol-gel)合成制备了PbTiO3、(Pb0.9-xLa0.1Cax)TiO3[简写为PLCT(100x)]纳米微粉,微粉平均粒径为20~40nm,利用拉曼散射和X射线衍射技术研究了不同Ca含量对PLCT(100x)纳米微粉的结构的影响,实验结果表明,PLCT(100x)纳米微粉的结构随x变化,亦即PLCT(100x)的轴比随x的增大反而减小,研究结果表明:PLCT(100x)拉曼谱的低频模可以看成是由于钙钛矿结构中A位离子Ca2+、La3+的偏离引起的,而高频模主要是TiO6八面体内部原子的相互运动造成相对位置变化,从而使八面体发生形变引起的。
Nanocrystalline (Pb0.9-xLa0.1Cax)Ti0.975O3 (PLCT) powders were prepared by the sol-gel technique. The average grain size of the powders is
from 20 to 40nm. The structure of the PLCT powders was investigated by using Raman scattering and X-ray diffraction analyses. The experimental results show that
low frequency phonon mode of PLCT (100x) Raman spectrum is attributed to the deviation of Ca2+ and La3+ in A location of the perovskite structure;
and high frequency phonon mode is attributed to the deformation of TiO6 octahedron, which is resulted by the deviation of the atoms in TiO6 octahedron from ideal position.
参考文献
[1] | 马风领, 邹颂扬, 张沛霖, 等. 压电与声光 1990, 12(4): 33--36. [2] 曾汉民主编. 高技术新材料要览. 北京:中国科学技术出版社, 1993. 341. [3] Tang X G, Zhou Q F, Zhang J X. J. Appl. Phys., 1999, 86: 5194--5197. [4] Zhang Q Q, Chan H L W, Ploss B. IEEE Trans. Ultrason. Ferroelect. Frequenc. Contr., 2001?, 48: 154--160. [5] Ishikawa K, Yoshikawa K, Okada N. Phys.Rev., 1988, B37: 5852--5855. [6] Zhong W L, Jiang B, Zhang P L, et al. J. Phys. Conden. Matter., 1993, 5: 2619--2624. [7] Tavares E C S, Pizani P S, Eiras J A. Appl. Phys. Lett., 1998, 72?: 897--899. [8] Wu D, Li A D, Ge C Z, et al, Thin Solid Film, 1998, 322: 323--328. [9] Song Z T, Fu X R, Zeng J M, et al. Jpn. J. Appl. Phys., 1999, 38: 6415--6420. [10] Song Z T, Lin C L, Wang L W, et al. Materials Letters, 2001, 47: 219--224. [11] Fu X R, Li J H, Song Z T, et al, Materials Letters, 2000, 44: 70--74. [12] 郑立荣, 杨平维, 林成鲁, 等. 中国激光, 1998, A25: 473--476. [13] H.P.克鲁格, L.E.亚历山大, 盛世雄等译. X射线衍射技术(多晶体和非晶质材料). 冶金工业出版, 1986. 421. [14] 钟维烈. 铁电物理学. 北京: 科学出版社, 1998.160. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%