欢迎登录材料期刊网

材料期刊网

高级检索

初始晶粒尺寸为0.33μm和7.0μm的Al2O3/14%B4C粉末在不同温度烧结,并模拟计算陶瓷粉末烧结过程。通过对比实验结果和计算结果,找出影响材料致密化的机制,讨论晶粒尺寸对扩散机制的影响,并估算出致密化激活能。在实验烧结温度范围内,界面反应被认为是影响Al2O3/B4C粉末致密化过程的主要因素。Al2O3/14%B4C陶瓷的致密化激活能是1820±60KJ.mol-1,这结果很大程度上支持界面反应致密化机制。

Al2O3/14%B4C powders with the initial grain sizes of 0.35μm and 7.0μm,respectively,were sintered at different temperatures.Constitutive laws for densification were employed to model the sintering process of Al2O3/B4C ceramics.Based on the constitutive laws employed and the experimental results obtained,the dominant densification mechanism was identified and the effect of grain size on dominant densification mechanism was discussed.The activation energy for densification was also evaluated.In the investigated sintering temperature range,interface reaction was identified as the controlling process in sintering of Al2O3/B4C powders.The activation energy for densification of the Al2O3/14%B4C ceramics was determined as 1820±60KJ.mol-1,which provided a strong support on the densification mechanism.

参考文献

[1] J. C. Wagner;C. V. Parks.Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit[M].Office of Nuclear Regulatory Research,Washington DC:18-30.
[2] C. E. Sanders;J. C. Wagner.ORNL. Study of the Effect of Integral Burnable Absorbers for PWR Burnup Credit[M].Office of Nuclear regulatory Research,Washington DC:4-43.
[3] Liu Yonghe;Yin Sheng;Zhang Weijing;Lai Hoyi .Thermodynamic analysis of the self-propagation high-temperature synthesis Al_2O_3/B_4C composite[J].Scripta materialia,1998(9):1237-1242.
[4] XUAN LIN;P. DARRELL OWNBY .Pressureless sintering of B_(4)C whisker reinforced Al_(2)O_(3) matrix composites[J].Journal of Materials Science,2000(2):411-418.
[5] W.D. Kingery;H.K. Bowen;D.R. Uhlmann.Introduction to Ceramics[M].New York:John Wiley and Sons,Inc,1975
[6] M.F. Ashby .On interface-reaction control of Narbarro-Herring creep and sintering[J].Scripta Metallurgica,1969,3:837-842.
[7] B. Burton.Interface reaction controlled diffusional creep: a consideration of grain boundary dislocation climb sources[J].Materials Science and Engineering,1972:9-13.
[8] J. Ma;A. C. F. Cocks.A constitutive model for the sintering offine grain alumina[A].Cambridge,UK,1996:129-138.
[9] You Zhou;Kiyoshi Hirao;Yukihiko Yamauchi.Densification and grain growth in pulse electric current sintering of alumina[J].Journal of the European Ceramic Society,2004(24):3465-3470.
[10] He ZM;Ma J .Constitutive modeling of alumina sintering: grain-size effect on dominant densification mechanism[J].Computational Materials Science,2005(2):196-202.
[11] Z.Z. Du;A. C. F. Cocks.Sintering of fine-grained materials by interface reaction controlled grain boundary diffusion[J].J Solids Struet,1994(31):1429-1445.
[12] He ZM.;Ma J. .Constitutive modeling of the densification of PZT ceramics[J].The journal of physics and chemistry of solids,2003(2):177-183.
[13] 孙军龙,刘长霞,何士龙.B4C/Al2O3/TiC复合陶瓷的力学性能和微观结构[J].材料工程,2008(07):27-29.
[14] J. Ma .Constitutive modeling of the densification of porous eeramic components[D].University of Cambridge Cambridge,1997.
[15] 黄晓巍.液相烧结氧化铝陶瓷的致密化机理[J].材料导报,2005(z1):393-394,404.
[16] Yamada S;Hirao K;Yamauchi Y et al.High strength B4 CTiBzcomposites fabricated by reaction hot-pressing[J].Journal of the European Ceramic Society,2003,23:1123-1130.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%