通过对二维不可压缩N-S方程的涡量-流函数方程组消去涡量而得到仅以流函数为求解变量的控制方程,从而使不可压N-S方程的求解个数减到最少.求解方法采用本文提出的二阶精度的九节点紧致差分格式,因此无须对靠近边界的网格点作特殊处理.为了加快迭代收敛速度,采用多重网格加速技术.数值实验结果验证了方法的精确性和可靠性.
参考文献
[1] | Spotz W F .Accuracy and Performance of Numerical Wall Boundary Condition for Steady 2D Incompressible Streamfunction-Vorticity[J].International Journal for Numerical Methods in Fluids,1998,28:737-757. |
[2] | Ghia U;Ghia K N;Shin C .High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method[J].Journal of Computational Physics,1982,48:387-411. |
[3] | Gupta M M .High Accuracy Solutions of Incompressible Navier-Stokes Equations[J].Journal of Computational Physics,1991,93:343-359. |
[4] | Ming Li;Bengt Fornberg .A COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEME FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS[J].International Journal for Numerical Methods in Fluids,1995(10):1137-1151. |
[5] | Spotz W F;Carey G F .High-Order Compact Scheme for the Steady Stream-Function Vorticity Equations[J].International Journal for Numerical Methods in Engineering,1995,38:3497-3512. |
[6] | Shi-Jun Liao;F. Mashayek .A multigrid approach for steady state laminar viscous flows[J].International Journal for Numerical Methods in Fluids,2001(1):107-123. |
[7] | Stephenson J W .Single Cell Discretizations of Order Two and Four for Biharmonic Problems[J].Journal of Computational Physics,1984,55:65-80. |
[8] | Wesseling P W.An Introduction to Multigrid Methods[M].Chichester:Wiley and Sons,1992 |
[9] | Brandt A .Multi-Level Adaptive Solution to BoundaryValue Problems[J].Mathematics of Computation,1977,31(138):333-390. |
[10] | Briggs W L.A Multigrid Tutorial Philadelphia[M].SIAM,1987 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%