欢迎登录材料期刊网

材料期刊网

高级检索

通过对二维不可压缩N-S方程的涡量-流函数方程组消去涡量而得到仅以流函数为求解变量的控制方程,从而使不可压N-S方程的求解个数减到最少.求解方法采用本文提出的二阶精度的九节点紧致差分格式,因此无须对靠近边界的网格点作特殊处理.为了加快迭代收敛速度,采用多重网格加速技术.数值实验结果验证了方法的精确性和可靠性.

参考文献

[1] Spotz W F .Accuracy and Performance of Numerical Wall Boundary Condition for Steady 2D Incompressible Streamfunction-Vorticity[J].International Journal for Numerical Methods in Fluids,1998,28:737-757.
[2] Ghia U;Ghia K N;Shin C .High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method[J].Journal of Computational Physics,1982,48:387-411.
[3] Gupta M M .High Accuracy Solutions of Incompressible Navier-Stokes Equations[J].Journal of Computational Physics,1991,93:343-359.
[4] Ming Li;Bengt Fornberg .A COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEME FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS[J].International Journal for Numerical Methods in Fluids,1995(10):1137-1151.
[5] Spotz W F;Carey G F .High-Order Compact Scheme for the Steady Stream-Function Vorticity Equations[J].International Journal for Numerical Methods in Engineering,1995,38:3497-3512.
[6] Shi-Jun Liao;F. Mashayek .A multigrid approach for steady state laminar viscous flows[J].International Journal for Numerical Methods in Fluids,2001(1):107-123.
[7] Stephenson J W .Single Cell Discretizations of Order Two and Four for Biharmonic Problems[J].Journal of Computational Physics,1984,55:65-80.
[8] Wesseling P W.An Introduction to Multigrid Methods[M].Chichester:Wiley and Sons,1992
[9] Brandt A .Multi-Level Adaptive Solution to BoundaryValue Problems[J].Mathematics of Computation,1977,31(138):333-390.
[10] Briggs W L.A Multigrid Tutorial Philadelphia[M].SIAM,1987
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%