欢迎登录材料期刊网

材料期刊网

高级检索

利用TDS氢热分析及超声波疲劳等试验方法研究了3种不同氢含量的超高强度弹簧钢60Si2CrVA的超高周疲劳性能.TDS分析结果表明,电解充氢样(CH样)的氢逸出曲线在低温侧有一个强的氢逸出峰,在高温侧有一个弱的氢逸出峰;淬回火样(QT样)和真空处理样(VT样)则仅在高温侧附近有一弱的氢逸出峰.3种氢含量试样的疲劳断口均以包含GBF(粒状亮区)的内部夹杂起裂方式为主.随着氢含量的增加,GBF区的面积增加而试样在109周次下的疲劳强度显著下降.

参考文献

[1] Ochi Y;Matsumura T;Masaki K.High-Cycle Rotating Bending Fatigue Property in Very Long-Life Regime of High-Strength Steels[J].Fatigue and fracture of engineering materials and structures,2002(25):823.
[2] Palin-Luc T;Perez-Mora R;Bathias C.Fatigue Crack Initiation and Growth on a Steel in the Very High Cycle Regime With Sea Water Corrosion[J].Engineering Fracture Mechanics,2010(77):1953.
[3] 李守新;翁宇庆;惠卫军.高强度钢超高周疲劳性能--非金属夹杂物的影响[M].北京:冶金工业出版社,2010
[4] Shiozawa K;Lu L;Ishihara S.S-N Curve Characteristics and Subsurface Crack Initiation Behaviour in Ultra-Long Life Fatigue of a High Carbon-Chomium Bearing Steel[J].Fatigue Fract Engng Mater Struc,2001(24):781.
[5] 赵海民,惠卫军,聂义宏,董瀚,翁宇庆.夹杂物尺寸对60Si2CrVA高强度弹簧钢的高周疲劳性能的影响[J].钢铁,2008(05):66-70.
[6] Shiozawa K;Morii Y;Nishino S.Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime[J].International Journal of Fatigue,2006(28):1521.
[7] HUANG Z;Wagner D;Bathias C.Subsurface Crack Initiation and Propagation Mechanisms in Gigacycle Fatigue[J].ACTA MATERIALIA,2010(58):6046.
[8] Murakami Y;Yokoyama N N;Nagata J.Mechanism of Fatigue Failure in Ultralong Life Regime[J].Fatigue and fracture of engineering materials and structures,2002(25):735.
[9] Chapetti MD.;Tagawa T.;Miyata T. .Ultra-long cycle fatigue of high-strength carbon steels part I: review and analysis of the mechanism of failure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):227-235.
[10] Billaudeau T;Nadot Y.Support for an Environmental Effect on Fatigue Mechanisms in the Long Life Regime[J].Inter J Fatigue,2004(26):839.
[11] Li, YD;Yang, ZG;Liu, YB;Li, SX;Li, GY;Hui, WJ;Weng, YQ .The influence of hydrogen on very high properties of high strength spring cycle fatigue steel[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):373-379.
[12] Furuya Y;Hirukawa H;Hayakawa M.Gigacycle Fatigue Properties of Hydrogen-Charged JIS-SCM440 Low-Lloy Steel Under Ultrasonic Fatigue Testing[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2010(41):2248.
[13] Liu, Y.B.;Li, S.X.;Li, Y.D.;Yang, Z.G. .Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(3):935-942.
[14] 褚武扬.氢损伤和滞后断裂[M].北京:冶金工业出版社,1988
[15] 武光宗,王毛球,甘国友,董瀚.利用TDS方法研究氢在两种马氏体钢中的扩散[J].钢铁研究学报,2011(09):42-45.
[16] WANG M Q;Akiyama E;Tsuzaki K.Hydrogen Degradation of a Boron-Bearing Steel With 1050 and 1300 MPa Strength Levels[J].Scripta Materialia,2005(52):403.
[17] Nagao A;Kuramoto S;Ichitani K.Visualization of Hydrogen Transport in High Strength Steels Affected by Stress Fields and Hydrogen Trapping[J].Scripta Materialia,2001(45):1227.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%