选取三点弯曲试样、采用J积分方法评价了GH690合金从室温到623K的断裂韧性,考察了不同温度下合金的断裂行为.结果表明,GH690合金的断裂韧性随着温度的升高而降低.由于室温层错能较低,合金变形可以通过孪生协调进行,而形变孪晶诱导裂纹扩展转向,延长了裂纹的扩展路径,使合金表现为较高的断裂韧性;随着温度的升高,合金的层错能增加,形变孪晶生成的机率降低,裂纹扩展转向减少,导致合金的断裂韧性随之降低.
参考文献
[1] | P.Diano,A.Muggeo,J.C.Van Duysen,M.Guttmann,Relationship between microstructure and mechanical properties of Alloy 690 tubes for steam generators,Journal of Nuclear Materials,188(3),290(1989) |
[2] | GAO X.S.,B.A.Yong,T.S.Srivatsan,J.P.King,The response of alloy 690 tubing in a pressurized water reactor environment,Materials and Design,28(2),373(2007) |
[3] | K.Stiller,J.O.Nilsson,K.Norring,Structure,chemmtry,and stress corrosion cracking of grain boundaries in alloys 600 and 690,Metallurgical and Materials Transactions A,27A(2),327(1996) |
[4] | Seong Sik Hwang,Hong Pyo Kim,Yun Soo Lim,Joung Soo Kim,L.Thomas,Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead,Corrosion Science,49(10),3797(2007) |
[5] | R.A.Page,A.Mcminn,Relative stress corrosion suscep-tibilities of alloys 690 and 600 in simulated boiling water reactor environments,Metallurgical Transactions A,17A(5),877(1986) |
[6] | C.M.Brown,W.J.Mills,Fracture toughness of alloy 690and EN52 welds in air and water,Metallurgical and Materials Transactions A,33A(6),1725(2002) |
[7] | D.M.Symons.Effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690,Metallurgical and Materials Transactions A,29A(4),1265(1998) |
[8] | Venkatesh Vasisht.H.J.Rack.Elevated temperature hardening of INCONEL 690,Mechanics of Materials,30(1),69(1998) |
[9] | H.B.Park,Y.H.Kim,B.W.Lee,K.S.Rheem,Effect of heat treatment on fatigue crack growth rate of Inconel 690and Inconel 600,Journal of Nuclear Materials,231(3),204(1996) |
[10] | I.A.Choudhury,M.A.E1-Baradie.Machinability of nickelbase super alloys:A general review,Journal of Materials Processing Technology,77(1-3),278(1998) |
[11] | W.S.Lee,C.Y.Liu,T.N.Sun,Dynamic impact response and microstructural evolution of Inconel 690 superalloy at elevated temperatures,International Journal of Impact Engineering,32(1-4),210(2005) |
[12] | G.E.Fuchs,S.Z.Hayden,Microstrncture and tensile properties of nitrogen containing vacuum atomized alloy 690,Scripta Metallurgica and Materialia,25(6),1483(1991) |
[13] | W.J.Mills.On the relationship between stretch zone formation and the J integral for high strain-hardening materials,Journal of Testing and Evaluation,9(1),56(1981) |
[14] | J.F.Breedis.Influence of dislocation substructure on the martensitic transformation in stainless steel,Acta Metallurgica,13(3),239(1965) |
[15] | B.X.Huang,X.D.Wang,Y.H.Rong,L.Wang,L.Jin,Mechanical behavior and martensitic transformation of an Fe-Mn-Si-Al-Nb alloy,Materials Science and Engineering A,438-440,306(2006) |
[16] | F.Abrassart,Stress-induced,γ→α'martensitic transformation in two carbon stainless steels.Application to TRIP steels,Metallurgical Transactions A,4(9),2205(1973) |
[17] | L.E.Murr.Stacking-fault anomalies and the measurement of stacking-fault free energy in f.c.c.thin films,Thin Solid Films,4(6),389(1969) |
[18] | E.M.Lehockey,G.Palumbo,K.T.Anst,U.Erb,P.Lin,On the role of intercrystalline defects in polycrystal plasticity,Scripta Materialia,39(3),341(1998) |
[19] | P.Lin,G.Palumbo,U.Erb,K.T.Anst,Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600,Scripta Metallurgica and Materialia,33(9),1387(1995) |
[20] | M.Michiuchi,H.Kokawa,Z.J.Wang,Y.S.Sato,K.Sakai,Twin-induced grain boundary engineering for 316anstenitic stainless steel,Acta Materialia,54(19),5179(2006) |
[21] | C.A.Schuh,M.Kumar,W.E.King,Analysis of grain boundary networks and their evolution during grain boundary engineering,Acta Materialia,51(3),687(2003) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%