欢迎登录材料期刊网

材料期刊网

高级检索

采用纳米铜粉为原材料,通过直接在空气气氛中氧化的方法制备了含有微量Cu的纳米CuO/Cu复合材料作为锂离子电池负极材料。采用XRD、SEM、TEM等材料结构分析方法和恒电流充放电测试技术对在250~500℃不同氧化温度下获得产物的结构和电化学性能进行研究。研究结果表明,在250~500℃下氧化4小时,纳米Cu粉基本氧化为CuO,其含量在94wt.%以上,并保持初始Cu粉的纳米尺寸。经250~450℃氧化的产物中有微量的Cu(3~4wt.%)保留下来,而500℃氧化的样品中未发现有Cu。用该方法制备的纳米CuO/Cu作为锂离子电池负极材料表现出良好的循环稳定性,其中,经450℃氧化的材料表现出最高的循环稳定性。经8个循环活化后,容量达到423mAh/g,经80次循环后,容量保持有377mAh/g,容量保持率接近90%。

Nano-Cu powder is used as the starting material to synthesize CuO/Cu composite with minor Cu as an anode material for lithium ion battery.X-ray diffractometry(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM) are used to analyze the structure of the CuO/Cu composites prepared by different oxidation temperatures,ranging from 250 to 500℃.Galvanostatic charge-discharge is used to test the electrochemical properties of the anodes.The results show that most of the Cu powder have been oxidized to CuO under the oxidation temperature of 250 to 500℃ for 4 hours and the content of CuO is higher than 94 wt.%.The nano-morphology of the raw Cu powder is preserved.Minor Cu remains in the products prepared by oxidation temperatures of 250 to 450℃,whereas no Cu is detected by XRD for the oxidation temperature of 500℃.The nano-CuO/Cu composite prepared by the thermal oxidation method shows favorable cycle stability as an anode material for lithium ion battery.The product prepared at 450℃ displays the best cycle stability.A capacity of 425mAh/g has been reached after an activation of 8 cycles,and the capacity retention almost reaches 90 % after 80 cycles.The capacity after 80 cycles maintains as 377mAh/g.

参考文献

[1] Poizot, P;S. Laruelle;S. Grugeon et al.Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407(6803):496-499.
[2] Kang, Y.M;M.S. Song;J. H. Kim et al.A study on the charge-discharge mechanism of Co304 as an anode for the Li ion secondary battery[J].Electrochimica Acta,2005,50(18):3667-3673.
[3] Mitra S;Poizot P;Finke A;Tarascon JM .Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition[J].Advanced functional materials,2006(17):2281-2287.
[4] Dar, M.A.;Nam, S.H.;Kim, Y.S.;Kim, W.B. .Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures[J].Journal of solid state electrochemistry,2010(9):1719-1726.
[5] S. Grugeon;S. Laruelle;R. Herrera-Urbina .Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium[J].Journal of the Electrochemical Society,2001(4):A285-A292.
[6] Wang,B;X.L.Wu;C.Y.Shu et al.Synthesis of CuO/graphene nanoeomposite as a high-performance anode material for lithium-ion batteries[J].Journal of Materials Chemistry,2010,20(47):10661-10664.
[7] Fu-Sheng Ke;Ling Huang;Guo-Zhen Wei;Lian-Jie Xue;Jun-Tao Li;Bo Zhang;Shu-Ru Chen;Xiao-Yong Fan;Shi-Gang Sun .One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance[J].Electrochimica Acta,2009(24):5825-5829.
[8] L. B. Chen;N. Lu;C. M. Xu;H. C. Yu;T. H. Wang .Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries[J].Electrochimica Acta,2009(17):4198-4201.
[9] Julian Morales;Luis Sanchez;Francisco Martin;Jose R. Ramos-Barrado;Miguel Sanchez .Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells[J].Electrochimica Acta,2004(26):4589-4597.
[10] Xiang, J.Y.;Tu, J.P.;Zhang, J.;Zhong, J.;Zhang, D.;Cheng, J.P. .Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage[J].Electrochemistry communications,2010(8):1103-1107.
[11] J. Y. Xiang;J. P. Tu;Y. F. Yuan;X. L. Wang;X. H. Huang;Z. Y. Zeng .Electrochemical investigation on nanoflower-like CuO/Ni composite film as anode for lithium ion batteries[J].Electrochimica Acta,2009(4):1160-1165.
[12] Shu-Fa Zheng;Jin-Song Hu;Liang-Shu Zhong .Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries[J].Chemistry of Materials: A Publication of the American Chemistry Society,2008(11):3617-3622.
[13] Venkatachalam, S.;Zhu, H.;Masarapu, C.;Hung, K.;Liu, Z.;Suenaga, K.;Wei, B. .In-situ formation of sandwiched structures of nanotube/Cu_xO _y/Cu composites for lithium battery applications[J].ACS nano,2009(8):2177-2184.
[14] Qimin Pan;Haizu Jin;Hongbo Wang;Geping Yin .Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance[J].Electrochimica Acta,2007(2):951-956.
[15] Debart, A;L. Dupont;P. Poizot.A Transmission of the Reactivity Mechanism of toward Lithium[J].ECS,2001:AI266-AI274.
[16] Hongbo Wang;Qinmin Pan;Jianwei Zhao .Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):408-413.
[17] Yan Yu;Chun-Hua Chen;Jiang-Lan Shul;Song Xie .Nickel-Foam-Supported Reticular CoO-Li_2O Composite Anode Materials for Lithium Ion Batteries[J].Angewandte Chemie,2005(43):7085-7089.
[18] Wang, P. C;H.P. Ding;T. Bark et al.Nanosized alphaFe2O3 and Li-Fe composite oxide electrodes for lithium-ion batteries[J].Electrochimica Acta,2007,52(24):6650-6655.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%