以AIP(Aluminum-isopropoxde)和 TEOS(Tetraethyl Orthosilicate)为主要原料,采用Sol-Gel-SCFD(超临界流体干燥)技术制备了n(Al2O3):n(SiO2)=3:2的Al2O3-SiO2二元纳米气凝胶,通过中温煅烧,获得了纳米级莫来石.用热重-差示扫描热量计(TG-DSC)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和物理吸附分析仪(Autosorb)等手段对二元纳米气凝胶和纳米莫来石进行了分析和研究.TG-DSC研究表明,在煅烧过程中,气凝胶的大部分失重(15.98%)在700℃左右已完成,DSC曲线上在445和 1015℃存在的两个放热峰是由于二元凝胶中的Si-O-Al-O结构重整和莫来石化所致,而在805℃处小的吸热峰是由体系中结构水分解所致;借助于 TG-DSC、XRD和 TEM分析手段,可以确定在纳米Al2O3-SiO2二元材料内,莫来石的开始形成温度为1015℃左右.XRD分析表明,完全转变成莫来石温度在1100~1200℃之间,1200℃可得晶粒发育良好的纳米级莫来石;TEM和物理吸附分析仪测试结果表明,1100和1200℃所得纳米莫来石的微粒大小分别为30和50nm左右, 比表面积分别为138.91和95.81m2/g.
Nanometer mullite was prepared through Sol-Gel-SCFD and middle temperature calcination by using aluminium-isopropoxde
and tetraethyl orthosilicate as starting materials, the alumina-silica binary aerogel and calcined nanosized materials were investigated by
using thermogravimetry-differential scanning calorimeter (TG-DSC), transmission electron microscope (TEM), X-Ray diffractometer (XRD) and specific surface
area and porosimetry. TG-DSC indicated the removal of most of the volatiles, i.e. 15.98% up to about 700℃, and in the DSC curve, the existence of two
exothermic peaks at about 445 and 1015℃ may be due to the crystallization of Si-O-Al-O in diphasic gels and mullitization, and a small
endothermic peak at about 805℃ indicated the decomposition of structural water molecules. The beginning temperature of mullitization of the
Al2O3-SiO2 at about 1015℃ in gel was confirmed by TG-DSC, XRD and TEM, XRD results which also showed the formation of mullite at the
range 1100-120℃. TEM and surface area and porosimetry results showed that the nanosized mullite calcinated at 1100 and 1200℃
exhibited the sizes of 30nm and 50nm, specific surface area 138.91m2/g and 95.81m2/g respectively.
参考文献
[1] | Grabham Bill. Proceedings of International Symposium on Refractories, Hangzhou, 1988. 262--266. [2] 任国斌. Al2O3-SiO2系实用耐火材料, 第1版. 北京: 冶金工业出版社, 1988. 7--38. [3] 饶东生主编. 硅酸盐物理化学, 第1版. 北京: 冶金工业出版社, 1983. 113--115. [4] Treadwell D R, Dabbs D R, Aksay I A. Chem. Mater, 1996, 8 (8): 2056--2060. [5] Dabbs Daniel M, Yao Nan, Aksay Ilhan A. Journal of Nanoparticle Research, 1999, (1): 127--130. [6] Low I M, Suherman P M, Phillips P N. Journal if Materials Science Letters, 1997, (16): 982--984. [7] Thomas M P, Landham R R, Butler E P, et al. Journal of membrane science, 1991, 61 (3): 215--225. [8] Larbot A, Fabre J P, Guizard C, et al, Journal of membrane science, 1988, 39 (2): 203--212. [9] 姚连增, 李小毛, 蔡维理, 等(YAO Lian-Zeng, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 1998, 26 (3): 319--323. [10] 赵惠忠, 计道珺, 雷中兴, 等. 耐火材料, 2003, 37 (2): 187--190. [11] 赵惠忠, 胡守天, 李轩科,等 (ZHAO Hui-Zhong, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2002, 30 (10): 12--17. [12] Twari P H, Hunt A J, Lofftus K D. Mater Lett, 1985, 3 (9-10): 363--368. [13] Walter leitner. Nature, 2000, 405 (11): 129--130. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%