纳米铝粉表面包覆改性对防止其氧化失活具有非常重要的作用.概括了纳米铝粉表面改性的4种包覆机理,从原位包覆及表面钝化处理后包覆2方面详细综述了国外纳米铝粉表面包覆改性的研究最新进展,比较了原位包覆与表面钝化处理后包覆的异同点,分析了国内纳米铝粉表面包覆改性研究所取得的成果,指出了目前纳米铝粉表面包覆改性所存在的问题及未来的发展方向.
参考文献
[1] | Valery Babuk;ildar Dolotkazin;Alexey Gamsov;Andrey Glebov;Luigi T. DeLuca;Luciano Galfetti .Nanoaluminum as a Solid Propellant Fuel[J].Journal of Propulsion & Power,2009(2):482-489. |
[2] | Chung S W .The synthesis and characterization of aluminum nanoparticles passivated with epoxides and graphite and the modeling of size-dependent enthalpy of reaction[D].[s.l.]:Saint Louis University,2011. |
[3] | 张立新.核壳结构微纳米材料应用技术[M].北京:国防工业出版社,2010:6-7. |
[4] | Homola A M;Sussner H .Ultrathin particulate magnetic recording media[J].Journal of Applied Physics,1987,61(08):3898-3904. |
[5] | 李鑫,赵凤起,樊学忠,姚二岗,安亭,仪建华,李猛.聚合物对微/纳米铝粉表面包覆改性的研究进展[J].中国表面工程,2013(02):6-13. |
[6] | 张淑霞,李建保,张波,翟华嶂,汪立芜.TiO2颗粒表面无机包覆的研究进展[J].化学通报,2001(02):71-75. |
[7] | Lerner M I;Svarovskaya N V;Psakhie S G et al.Production Technology,Characteristics,and Some Applications of Electric Explosion Nanopowders of Metals[J].Nanotechnologies in Russia,2012,4(11):741-757. |
[8] | Gromov, AA;Strokova, YI;Ditts, AA .Passivation films on particles of electroexplosion aluminum nanopowders: A review[J].Russian journal of physical chemistry, B.,2010(1):156-169. |
[9] | Gromov A;F(o)rter-Barth U;Teipel U.DTA-TG study of aluminum nanopowders (and) passivated by reactive coatings[A].Karlsruhe:[s.n.],2005 |
[10] | Kwon YS;Gromov AA;Strokova JI .Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2007(12):5558-5564. |
[11] | Gromov A A;Filmer-Barth U;Teipel U .Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings:Characterization and reactivity with air and water[J].Powder Technology,2006,164(02):111-115. |
[12] | Mench M M;Kuo K K;Yeh C L et al.Comparison of Thermal Behavior of Regular and Ultrafine Aluminum Powders (ALEX) Made from Plasma Explosion[J].Process Combustion Science and Technology,1998,135(1 - 6):269-292. |
[13] | Marcus J S .Aluminum core-shell nanoparticles:synthesis,properties,and application[D].[s.l.]:University of Dayton,2010. |
[14] | Haber JA.;Buhro WE. .Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; Facile room-temperature grain growth[J].Journal of the American Chemical Society,1998(42):10847-10855. |
[15] | Nelson D;Brammer C.In Fluorinated Templates for Energy-Related Nanomaterials and Applications[M].[s.l.]:American Chemical Society,2011:103-125. |
[16] | Hammerstroem, D.W.;Burgers, M.A.;Chung, S.W.;Guliants, E.A.;Bunker, C.E.;Wentz, K.M.;Hayes, S.E.;Buckner, S.W.;Jelliss, P.A. .Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: Ratio-dependent stability and particle size[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2011(11):5054-5059. |
[17] | Jhenry J L;Scofpa J K .Nelllron powder diffraction of carbon-coated Fe Co alloy nanoparticles[J].Applied Physics A(Materials Science and Processing),1999,85(08):4409-4411. |
[18] | Saberi A;Sarpoolaki H;Fand F G.The effect of amorphous carbon coating on aluminum hydration resistance[A].[s.l.]:[s.n.],2006:608-612. |
[19] | Park K;Rai A;Zachariah MR .Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-particle mass-spectrometry[J].Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology,2006(3/4):455-464. |
[20] | Guo L G;Song W L;Xie C S et al.Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-introduction complex heating in methane[J].Materials Letters,2007,61(14/15):3211-3214. |
[21] | Ermoline A;Schoenitz M;Dreizin E et al.Production of carbon coated aluminum nanopowders in pulsed microarc discharge[J].NANOTECHNOLOGY,2002,13(05):638-643. |
[22] | Sundaram D S;Yang V;Puri P.Thermo-Mechanical Behavior of Nickel-Coated Nano-Aluminum Particles[A].Florida:American Institute of Aeronautics and Astronautics,2011:1-13. |
[23] | Timothy J.Foley;Curtis E.Johnson;Kelvin T.Higa .Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating[J].Chemistry of Materials,2005(16):4086-4091. |
[24] | 曹国忠;王颖.纳米结构和纳米材料:合成、性能及应用[M].北京:高等教育出版社,2012:25-38. |
[25] | 李颖,宋武林,谢长生,王爱华,曾大文.纳米铝粉在固体推进剂中的应用进展[J].兵工学报,2005(01):121-125. |
[26] | Kyoungjin Kim .High Energy Pulsed Plasma Arc Synthesis and Material Characteristics of Nanosized Aluminum Powder[J].Metals and Materials International,2008(6):707-711. |
[27] | Pivkina A;Ivanov D;Frolov Y;Mudretsova S;Nickolskaya A;Schoonman J .Plasma synthesized nano-aluminum powders - Structure, thermal properties and combustion behavior[J].Journal of thermal analysis and calorimetry,2006(3):733-738. |
[28] | Barbara A H;Marcus J S;Elena A G.Synthesis and characterization of aluminum nanostructures prepared via the sonochemical method[A].Greenville,SC:[s.n.],2007 |
[29] | Dubois C;Brousseau P;Roy C.In-stiu polymer grafting on ultrafine aluminum powder[A].[s.l.]:[s.n.],2004 |
[30] | 吕英迪,郑晓东,陈志强,李洪丽,唐望,石强,邱少君.CVD法制备碳/高活性铝复合材料[J].火炸药学报,2012(06):104-106. |
[31] | 姚二岗,赵凤起,高红旭,徐司雨,胡荣祖,郝海霞,安亭,裴庆,肖立柏.油酸包覆纳米铝粉/黑索今复合体系的热行为及非等温分解反应动力学[J].物理化学学报,2012(04):781-786. |
[32] | 姚二岗,赵凤起,郝海霞,徐司雨,高红旭,李鑫.全氟十四酸包覆纳米铝粉的制备及点火燃烧性能[J].火炸药学报,2012(06):70-75. |
[33] | 邱海林;尹光 .一种核-壳结构功能包覆纳米铝-镍的制备方法[P].中国,200710056768.0,2008-08-13. |
[34] | 张小塔,宋武林,郭连贵,胡木林,谢长生.激光-感应复合加热法制备碳包覆纳米铝粉[J].推进技术,2007(03):333-336. |
[35] | 张凯,范敬辉,黄渝鸿,谭云.纳米Al/PS微胶囊中铝粉含量及活性分析[J].含能材料,2007(05):482-484. |
[36] | Guo, LG;Song, WL;Hu, ML;Xie, CS;Chen, X .Preparation and reactivity of aluminum nanopowders coated by hydroxyl-terminated polybutadiene (HTPB)[J].Applied Surface Science,2008(8):2413-2417. |
[37] | 马振叶;赵凤起;徐娟 等.一种固体推进剂用纳米Al/Ni/HTPB核-壳结构含能复合粒子及其制备方法[P].中国,201210585803.9,2013-05-08. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%