欢迎登录材料期刊网

材料期刊网

高级检索

为探索温度可控的大功率半导体激光器作用下非平衡态的奥氏体转化温度和马氏体临界转化速度两个条件同时对中碳钢的相变硬化的作用机理,本文利用温度可控的大功率半导体直接输出激光加工系统对45钢进行温度控制模式下的激光相变硬化实验.实验表明:在相同激光相变硬化控制温度下,随着扫描速度的增加,相变硬化层深度先增加后降低.对试样的显微组织分析表明,在扫描速度较慢时,受冷却速度影响产生的激光相变硬化区成分、组织的差异是造成硬化层深度和硬度不同的原因.并基于非平衡态的奥氏体转化温度和马氏体临界转化速度为马氏体生成的判断依据,建立了基于COMSOL Multiphysics软件的三维激光相变硬化数值分析模型,探讨了温度控制模式下激光加工参数对硬化层深度的影响,与实验结果对比发现该模型能够较为准确预测温度可控的激光相变硬化层深度.

In order to research the effects of non-equilibrium austenitic transition temperature and martensitic critical transformation speed on transformation hardening of a medium-carbon steel,the laser transformation hardening experiments were conducted on a high power semiconductor laser processing system under the temperature control mode.The experimental results show that,under the same laser transformation hardening control temperature,the hardening depth increases at first and then decreases with the increase of the scanning speed.Microstructure analysis of the samples shows that the different composition and microstructure of the laser transformation hardening zone influenced by cooling rate were responsible for the property difference of the hardened layer.To analyze the effect of laser processing parameters on the hardened layer depth,a three-dimensional laser transformation hardening simulation model was built with the COMSOL Multiphysics based on the non-equilibrium austenite transformation temperature and the martensitic critical conversion rate.Comparing with the experimental results,the model can predict the laser transformation hardening layer depth in laser hardening process accurately.

参考文献

[1] 刘其斌;魏远翔;李海;李珊;王袆.T10钢宽带激光相变硬化的组织与性能研究[J].现代机械,2003(6):85-87.
[2] 何强;苏华礼;刘宏昭;叶军.高速主轴用40Cr钢的激光相变硬化工艺[J].中国激光,2009(8):2192-2196.
[3] 李刚;相珺;况军.激光相变硬化工艺参数对40Cr组织性能的影响[J].腐蚀科学与防护技术,2010(5):392-394.
[4] 王云山;张兴泉;雷剑波;杨洗陈.曲轴激光淬火工艺[J].中国激光,2007(4):574-576.
[5] 许德胜;戴少波;凌东雄.激光热处理工件边界的保护及模拟研究[J].中国激光,2004(5):626-630.
[6] Bi GJ;Gasser A;Wissenbach K;Drenker A;Poprawe R.Identification and qualification of temperature signal for monitoring and control in laser cladding[J].Optics and Lasers in Engineering,200612(12):1348-1359.
[7] 周广才;孙康锴;邓琦林.激光熔覆中的控制问题[J].电加工与模具,2004(2):39-42.
[8] 沈治.激光熔覆加工中加工温度自适应控制研究[J].机床与液压,2011(22):118-120,128.
[9] 宁保群;严泽生;付继成;别利剑;刘永长.冷却速率对T91钢相变过程及组织的影响[J].钢铁,2009(7):71-75.
[10] 马天驰.金属材料激光相变硬化的三维数值模拟[J].中国激光,1996(12):1127.
[11] 徐洪烟;袁国定;周建忠.激光相变硬化带的理论预测[J].福建农林大学学报(自然科学版),2003(3):403-405.
[12] 麦永津;揭晓华;卢国辉.基于ANSYS的塑料模具钢激光相变硬化数值模拟[J].模具工业,2007(6):69-72,74.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%