钢铁钒钛, 2011, 32(2): 25-28.
熔盐氯化炉稳态温度场有限元分析
居殿春 1, , 陈志勇 2, , 卿阳 3, , 严定鎏 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"海水干湿交替的间浸环境会加速电极表面的腐蚀。采用动电位极化、电化学交流阻抗(EIS)及激光拉曼光谱等分析方法研究了45钢/BIO电偶对在海水间浸工况下的腐蚀及其产物。并与海水全浸进行对比。结果显示:45钢电偶对在海水间浸下的腐蚀较严重,B10电偶对在海水间浸下的腐蚀速率较大,生成的腐蚀产物膜较厚;45钢电偶对锈层在海水全浸下的主要成分是Ot—Fe2O3和α-FeOOH,在海水间浸下的主要成分是a—Fe203和γ-FeOOH;B10电偶对锈层在2种工况下的主要成分有CuO,Cu2O和CuCO3·Cu(OH)2。结果表明,电偶对在海水间浸环境下的腐蚀较严重,这主要与电极表面的状态变化有关。","authors":[{"authorName":"郭娟","id":"18a5f72a-efdd-42b3-94d2-ab00bf8e47c9","originalAuthorName":"郭娟"},{"authorName":"许立坤","id":"3a90dafc-7f8e-4e0d-bed2-291ca5da62ec","originalAuthorName":"许立坤"},{"authorName":"侯文涛","id":"041cd6f8-9e15-4f0e-b2ee-a4bae17d6ef2","originalAuthorName":"侯文涛"},{"authorName":"李相波","id":"7e514182-f5b2-4e1b-aee0-671ba5e62b79","originalAuthorName":"李相波"}],"doi":"","fpage":"29","id":"09432c04-5cd7-413a-9891-3a175a25feb8","issue":"10","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"976135bb-611f-47ad-9da4-d0e84526d91a","keyword":"腐蚀行为","originalKeyword":"腐蚀行为"},{"id":"0137e7c0-143e-4c48-b746-a045edba08f4","keyword":"45钢/B10电偶对","originalKeyword":"45钢/B10电偶对"},{"id":"c321d367-bbd0-499d-9fc5-5d0852d1341b","keyword":"海水干湿交替","originalKeyword":"海水干湿交替"},{"id":"e7b675ff-7681-4448-8623-b8112d67d03e","keyword":"间浸","originalKeyword":"间浸"},{"id":"4ba5d453-8ca5-4f29-9210-4ab10e012b37","keyword":"全浸","originalKeyword":"全浸"},{"id":"ef2756f4-fb74-4dad-8c7e-4430f94f11b8","keyword":"EIS","originalKeyword":"EIS"},{"id":"71949339-ccc1-456c-acd4-7424859b080c","keyword":"激光拉曼光谱","originalKeyword":"激光拉曼光谱"}],"language":"zh","publisherId":"clbh201210010","title":"海水问浸下45钢/BIO电偶对的电化学研究","volume":"45","year":"2012"},{"abstractinfo":"比较研究了紧固件用45钢与B10铜镍合金材料在海水间浸和全浸环境中的电偶腐蚀行为. 结果表明, 在全浸工况下偶合电位发生负移并逐渐稳定在-725 mV; 偶合电流随着时间的延长逐渐减小, 最终稳定在10 μA以下. 在间浸工况下偶合电位逐渐正移, 大约经历3个周期后稳定在-650 mV; 偶合电流随时间延长逐渐减小, 经过3个周期的干湿交替后最终稳定在20 μA左右. 失重测量结果表明间浸工况下的电偶腐蚀速率和电偶腐蚀效应均大于全浸工况下的数值, 这可能与电极表面状态的变化和“干”态下的去极化效应有关.","authors":[{"authorName":"郭娟","id":"fc516ca7-a8f9-4be9-b695-dd69458365c8","originalAuthorName":"郭娟"},{"authorName":"许立坤","id":"cfb87e67-e751-425f-a846-f67f752df973","originalAuthorName":"许立坤"},{"authorName":"侯文涛","id":"272819cf-1302-4954-9a50-3339255c7fb6","originalAuthorName":"侯文涛"},{"authorName":"李相波","id":"d489a085-b4cc-4b7f-b2b6-6919a227e4d3","originalAuthorName":"李相波"},{"authorName":"辛永磊","id":"4c5e68db-9ab8-446a-a790-fcccebfd6275","originalAuthorName":"辛永磊"}],"categoryName":"|","doi":"","fpage":"280","id":"6593e497-9393-4853-8c16-0012db4e77e3","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d808c2e5-ae59-4c4d-94ec-fe6665531125","keyword":"间浸","originalKeyword":"间浸"},{"id":"8cf5e31b-5c6c-4765-8275-dcf26e20e335","keyword":"full immersion","originalKeyword":"full immersion"},{"id":"816a4d04-3638-49d4-b611-63fbeca91efc","keyword":"galvanic corrosion","originalKeyword":"galvanic corrosion"},{"id":"0323b07c-e344-4521-afac-4ee023f35f2e","keyword":"Cu-Ni alloy","originalKeyword":"Cu-Ni alloy"}],"language":"zh","publisherId":"1002-6495_2012_4_6","title":"间浸工况下紧固件用45钢与B10管材电偶腐蚀行为研究","volume":"24","year":"2012"},{"abstractinfo":"H62黄铜与B10铜镍合金是船舶海水管路系统中广泛使用的电偶对,为了探讨其匹配性,研究了2种材料在0,1,3,5m/s流速海水中的电偶腐蚀行为。通过自然腐蚀电位监测、电偶腐蚀试验、三维视频显微镜考察了海水流速对2种材料电偶腐蚀倾向、电偶腐蚀规律和微观腐蚀形貌的影响。结果表明:在不同流速海水中,H62黄铜与B10间存在明显的电偶腐蚀倾向,H62作为阳极,腐蚀加剧,B10作为阴极受到保护。结果还表明,随海水流速增大,电偶腐蚀效应γ先减小后增大,于3m/s海水中呈现极小值;电偶腐蚀流速敏感性因子A逐渐增大;H62试样呈现出更为明显的冲刷腐蚀形貌。","authors":[{"authorName":"孙保库","id":"8ecce5cf-e609-4e5d-806c-8e37d83f328b","originalAuthorName":"孙保库"},{"authorName":"李宁","id":"7fea5066-7a6f-4778-ad5a-cec18a5f4906","originalAuthorName":"李宁"},{"authorName":"杜敏","id":"eb34b222-19b1-4d2d-9cfc-e7a6db792750","originalAuthorName":"杜敏"}],"doi":"","fpage":"20","id":"1cb24932-c808-41eb-bc18-cbcb40ea88f8","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"e944ded2-9a82-482f-8b94-0a5e39239b43","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"},{"id":"9d08684b-e9da-4b52-a656-d99aef30023c","keyword":"流动海水","originalKeyword":"流动海水"},{"id":"0d8f89ee-b489-4114-b93a-f919f3b75b4f","keyword":"B10铜镍合金","originalKeyword":"B10铜镍合金"},{"id":"4899b42e-e216-4d34-a215-ea2c58cc6554","keyword":"H62黄铜","originalKeyword":"H62黄铜"}],"language":"zh","publisherId":"clbh201107010","title":"不同流速海水中B10/H62电偶腐蚀规律","volume":"44","year":"2011"},{"abstractinfo":"通过电位监测、极化曲线测试考察了船舶海水冷却系统中B10铜镍合金与Tup紫铜间的电偶腐蚀倾向;通过两种材料不同面积比下的电偶腐蚀试验,考察了其电偶腐蚀特征和偶合效应;通过串联不同阻值电阻的模拟电绝缘试验,考察了阻值变化对电偶腐蚀的影响,测定了两种材料偶合的电绝缘判据.结果表明,两种材料间存在明显的电偶腐蚀倾向,B10/Tup面积比为5:1时,随浸泡时间延长出现阴阳极反转现象;随串联电阻增大,电偶腐蚀效应先增大后减小,当串联电阻R≥20 kΩ时,可基本上消除两种材料间的电偶腐蚀.","authors":[{"authorName":"孙保库","id":"2737dcc0-a6f7-4b9d-80e0-833f144353c3","originalAuthorName":"孙保库"},{"authorName":"李宁","id":"e9849d78-f068-48a9-8aa1-3107b2889986","originalAuthorName":"李宁"},{"authorName":"杜敏","id":"5160c41d-28ce-4a39-92ab-00d5a893a942","originalAuthorName":"杜敏"},{"authorName":"王波","id":"e6647e63-9561-43e8-8b73-f88fd2b5f887","originalAuthorName":"王波"},{"authorName":"陆阿定","id":"ec6df73d-c504-4e79-a610-b3128e6e889d","originalAuthorName":"陆阿定"}],"doi":"","fpage":"544","id":"9ffba28d-feef-490f-bece-ce3900c61a3e","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"1ff26014-1037-42d5-b09f-d25fa6152cbf","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"},{"id":"3b24e35e-6292-4805-8d2c-5fcd580b63b7","keyword":"电绝缘","originalKeyword":"电绝缘"},{"id":"695d3cb7-3ab9-4335-90a3-c655260a93ab","keyword":"海水管","originalKeyword":"海水管"},{"id":"ff9a91e4-ac52-4e32-81e2-11c86c2a0df6","keyword":"B10铜镍合金","originalKeyword":"B10铜镍合金"},{"id":"573d789b-48fb-48f9-920d-c2a1090bf4d7","keyword":"Tup紫铜","originalKeyword":"Tup紫铜"}],"language":"zh","publisherId":"fsyfh201007013","title":"B10铜镍合金与Tup紫铜的电偶腐蚀及电绝缘","volume":"31","year":"2010"},{"abstractinfo":"测试了模拟海洋环境中B10、B30铜合金及纯铁的电化学性能,采用恒电流法测试了纯铁牺牲阳极性能,并结合电偶腐蚀试验进一步分析了采用纯铁对B10、B30铜合金进行阴极保护的可行性.结果表明:纯铁的自腐蚀电位低于B10和B30铜合金的,牺牲阳极性能良好,有稳定工作电位,电流效率高;电偶腐蚀试验中,纯铁作为阳极材料极大地抑制了B10、B30铜合金的腐蚀,起到了良好的阴极保护效果.","authors":[{"authorName":"马启国","id":"2a3f25af-7a9c-4ade-87ff-b763b3d66bc9","originalAuthorName":"马启国"},{"authorName":"肖稳","id":"568f9b83-26cc-48e2-bdaa-fa747487bafc","originalAuthorName":"肖稳"},{"authorName":"陈散兴","id":"70d33685-c4c7-43c4-a99e-da345556bb01","originalAuthorName":"陈散兴"},{"authorName":"周学杰","id":"9ee92a49-6de4-459c-930e-7f983f19a343","originalAuthorName":"周学杰"},{"authorName":"张三平","id":"09b9537f-8bc8-433a-adbe-d3ecf62eae07","originalAuthorName":"张三平"}],"doi":"10.11973/fsyfh-201610003","fpage":"793","id":"bd883aaa-647a-42f0-9ae1-3734328b024a","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"dc1ba472-e087-4908-8adb-9e449dfda46e","keyword":"B30铜合金","originalKeyword":"B30铜合金"},{"id":"13d17a30-6a62-49a9-8191-d690980626f6","keyword":"B10铜合金","originalKeyword":"B10铜合金"},{"id":"0a504def-79e3-4865-82a7-770e27b2c975","keyword":"纯铁","originalKeyword":"纯铁"},{"id":"e11521e6-5a27-4ece-b845-00ee94302d18","keyword":"牺牲阳极","originalKeyword":"牺牲阳极"},{"id":"97955164-188f-4b84-9509-abe4b9021396","keyword":"阴极保护","originalKeyword":"阴极保护"}],"language":"zh","publisherId":"fsyfh201610003","title":"纯铁对B10和B30铜合金在模拟海洋环境中的阴极保护","volume":"37","year":"2016"},{"abstractinfo":"本文采用PAW方法,对B10合金薄板进行焊接实验,实现了4 mm厚B10合金板材的无缺陷焊接,并对焊缝成形性能、组织力学性能等进行了探索.实验结果表明:B10合金焊接性能好,与传统的手工TIG焊相比,焊接B10合金用PAW方法在焊缝外观成形、内部质量、焊接效率等方面更有优势.","authors":[{"authorName":"晏阳阳","id":"fb4b0b72-0db7-413c-8324-97349973d497","originalAuthorName":"晏阳阳"},{"authorName":"廖志谦","id":"4ddbe688-f917-4700-976c-b107853d6756","originalAuthorName":"廖志谦"},{"authorName":"刘希林","id":"b23cf421-af2d-4e53-b2ce-c3ad963ace6e","originalAuthorName":"刘希林"},{"authorName":"贾晓飞","id":"64f1986d-8905-4fae-8764-7501b9d6dd99","originalAuthorName":"贾晓飞"}],"doi":"10.3969/j.issn.1003-1545.2011.01.002","fpage":"4","id":"5fa83553-4650-45ce-927c-513078380a2e","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"9b57b1cf-7afe-4286-81fa-f1f1c49ea952","keyword":"B10合金","originalKeyword":"B10合金"},{"id":"966d74cb-90b9-4f24-8b27-b9d96d4bfc12","keyword":"PAW","originalKeyword":"PAW"},{"id":"a201113b-efc3-4388-a86f-8c6457446721","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d309bba2-8065-481f-930f-595a4fd4df46","keyword":"焊缝组织","originalKeyword":"焊缝组织"}],"language":"zh","publisherId":"clkfyyy201101002","title":"B10合金薄板PAW焊接工艺研究","volume":"26","year":"2011"},{"abstractinfo":"用中频真空感应炉制备了不同钇含量的B10铜合金,利用光学显微镜、扫描电镜、拉伸试验机、维氏硬度计和电化学工作站等研究了稀土钇含量对合金显微组织、力学性能和耐腐蚀性能的影响.结果表明:微量稀土钇可显著细化晶粒,提高合金的强度和硬度;随钇含量增加,合金的晶粒尺寸先减小后略有增大,强度和硬度先增大后略降低,塑性则变化不大;添加微量稀土钇后,腐蚀表面膜和B10铜合金基体的结合力增强,耐腐蚀性能得到提高;随稀土钇含量增加,合金的冲刷腐蚀速率先降低后略升高,电荷转移电阻Rt和氧化膜层电阻Rf均先增加后有所降低.","authors":[{"authorName":"张强","id":"d228e204-7c6e-49ad-ac94-7c1192e3d880","originalAuthorName":"张强"},{"authorName":"余新泉","id":"d4e5e5ae-24f5-4b45-9299-f044659ac70c","originalAuthorName":"余新泉"},{"authorName":"陈君","id":"9049450b-4dd1-4e32-8247-4b901d773b01","originalAuthorName":"陈君"},{"authorName":"冯秀梅","id":"e1c69a79-52d4-4155-be36-0582fde29f6d","originalAuthorName":"冯秀梅"},{"authorName":"沈睿","id":"2493a3c7-3bcf-4b56-96e6-0da2094f56b1","originalAuthorName":"沈睿"},{"authorName":"张发伦","id":"cd2c6a67-02e8-46fc-8fe2-7a568d06adfc","originalAuthorName":"张发伦"}],"doi":"","fpage":"14","id":"bc67633b-1310-408e-8cea-618757a46077","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2721a3f0-5963-4309-a937-81c65419a8de","keyword":"B10铜合金","originalKeyword":"B10铜合金"},{"id":"4c71478f-8718-4a6a-a9b9-c08529a5ce9c","keyword":"稀土钇","originalKeyword":"稀土钇"},{"id":"6e23e0fc-6274-48de-8748-1b94011bd434","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"11b1e044-4ba3-4015-ae3b-0d15da617fd3","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"3fd2e02f-a340-4e52-8331-e0754ae77242","keyword":"耐腐蚀性能","originalKeyword":"耐腐蚀性能"}],"language":"zh","publisherId":"jxgccl201501003","title":"稀土钇含量对B10铜合金组织和性能的影响","volume":"39","year":"2015"},{"abstractinfo":"为了改善国产B10合金的耐海水冲刷腐蚀能力,对其进行了改性,并对改性B10合金的化学成分、金相组织、耐海水腐蚀性能和防海生物污损性能等与德国产B10合金的进行了对比研究.结果表明,改性B10合金的耐海水腐蚀性能与德国产B10合金相当.此外,还介绍了改性B10合金产品在舰船上的实际应用情况.","authors":[{"authorName":"张永强","id":"412b9050-d078-460e-a27d-0c12ac3575f0","originalAuthorName":"张永强"}],"doi":"10.3969/j.issn.1003-1545.2007.06.010","fpage":"36","id":"b980ef68-6627-4929-9878-a4bc1ac79fb0","issue":"6","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"f23ecf1e-6b68-4348-96c1-48a641dbdbb8","keyword":"铜镍合金","originalKeyword":"铜镍合金"},{"id":"d52848ed-99b1-4502-955d-7145d13aa52b","keyword":"海水腐蚀","originalKeyword":"海水腐蚀"},{"id":"2f5953d6-86f6-4316-adf3-6d1eb616e173","keyword":"管系材料","originalKeyword":"管系材料"}],"language":"zh","publisherId":"clkfyyy200706010","title":"国产B10合金耐海水冲刷腐蚀对比研究","volume":"22","year":"2007"},{"abstractinfo":"海水泵阀等附件是海水管系的重要部件,国内常用锡青铜、硅黄铜制造,与目前推广使用的B10合金在海水中偶合时,电偶腐蚀较重,不能满足海水管系对高可靠性的要求.为此,研制了一种与B10海水管道材料配套使用的海水泵、阀材料.通过测量研制合金及常用泵阀材料与B10、B30等管道材料偶合时的电偶电流、电偶电位和电偶腐蚀率等参量,研究了新研制的合金在海水中的电偶腐蚀行为.","authors":[{"authorName":"郭泽亮","id":"cfc345a7-da5e-4c0f-8918-5495183d7e02","originalAuthorName":"郭泽亮"},{"authorName":"李文军","id":"1fe3ed7c-32d8-4af2-a8ba-73cededf885d","originalAuthorName":"李文军"},{"authorName":"王洪仁","id":"fc2f9e18-f4fc-4ee3-8ba6-230aa0a46bd1","originalAuthorName":"王洪仁"}],"doi":"10.3969/j.issn.1001-1560.2005.01.002","fpage":"5","id":"d912f55c-d6da-4ac0-b7c4-2c2bf90619d8","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"8f852dcb-cb79-4835-9ac2-ad6de7a9ed4a","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"},{"id":"aa63b9cd-5b7e-4cc8-a466-7f975312ccdb","keyword":"镍铝青铜","originalKeyword":"镍铝青铜"},{"id":"53d49750-0dcf-4f07-82ec-1208d7ead0df","keyword":"海水泵阀","originalKeyword":"海水泵阀"},{"id":"58f72b71-e2ea-412f-81d5-d2dbd04ad08e","keyword":"海水腐蚀","originalKeyword":"海水腐蚀"}],"language":"zh","publisherId":"clbh200501002","title":"新型镍铝青铜的电偶腐蚀行为研究","volume":"38","year":"2005"},{"abstractinfo":"将B10铜镍合金铸锭轧制成板材,经不同的变形量和退火温度处理,再以不同的方法进行表面处理,然后在海水中进行全浸暴露。暴露半年后,发现试样的抗污性能相差悬殊。以适当的变形量和650℃退火处理并经表面预成膜处理的B10合金板材,表现出耐蚀与抗污性能双优。而经不同变形量和450℃退火处理后,该合金的耐蚀性能较差,表面预成膜处理并不能提高其耐蚀性能,而其抗污性能却随变形量的不同而不同。通过电子显微镜观察分析,发现该合金的表面腐蚀形貌及微观组织结构与合金抗污性能有对应关系。","authors":[{"authorName":"林乐耘","id":"492dcaac-adc5-4f33-95d7-fc25279592eb","originalAuthorName":"林乐耘"},{"authorName":"王晓华","id":"57298d87-10ba-42bb-b476-68f6845e1eac","originalAuthorName":"王晓华"},{"authorName":"赵月红","id":"c84632d5-2150-44f5-ae51-c6dd851bd04b","originalAuthorName":"赵月红"},{"authorName":"徐杰","id":"e81a8dcc-be80-48d9-acf9-9beb072e6f25","originalAuthorName":"徐杰"}],"doi":"10.3969/j.issn.1003-1545.2001.01.007","fpage":"26","id":"03eaa8a1-3632-45ce-80f8-df4a1fe71c99","issue":"1","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"7433acf3-7218-422d-beca-a6264c35feb5","keyword":"B10铜合金加工工艺海水腐蚀抗污性能","originalKeyword":"B10铜合金加工工艺海水腐蚀抗污性能"}],"language":"zh","publisherId":"clkfyyy200101007","title":"加工工艺及表面预处理对B10合金板材抗海生物污着性能的影响","volume":"16","year":"2001"}],"totalpage":16295,"totalrecord":162947}