利用热模拟技术(DIL805A热膨胀仪)和显微分析方法,对不同成分体系X100/X120高强度管线钢在连续冷却转变下的显微组织的变化规律进行了研究。研究结果表明,对于无B钢,随冷速增加,组织中依次出现多边形铁素体(PF)、粒状贝氏体(GB)、贝氏体铁素体(BF)和马氏体(M)。B元素的添加使得管线钢相变开始温度降低到500℃左右,抑制了多边形铁素体的形成,促进了贝氏体的形成。为了获得高级别管线钢X100的复相组织,无B钢的冷却速度应控制在20~30℃/s,而含B钢的冷速只需控制在5~15℃/s,简化了冷却工艺。
Microstructures in continuously cooled X100/X120 high strength pipeline steels were investigated by means of heat simulation technique on a thermal dilatometer (DIL805A) and optical microscope. The results show that the microstructures of samples in B free steel are changed from polygonal ferrite, granular bainite, bainitic ferrite to lath martensite with the cooling rate increases.B addition in the pipeline steels can decrease the start temperature of austenite transformation to about 500℃,inhibit the formation of the polygonal ferrite and promote the formation of bainite.To achieve the microstructure constitutes of X100 pipeline steel,the cooling rate for B free steel is 20-30℃/s,while the cooling rate for B bearing steel is 5-15℃/s ,simplify the cooling process.
参考文献
[1] | |
[2] | Alan Glover,Joe zhou,Nobuhisa,Nobuyuki Ishikawa.X100管线钢在输气管线工程中的应用[C].石油天然气管道工程技术及微合金化钢.北京:冶金工业出版社,2006:215-216.[2]郑磊,傅俊岩.高等级管线钢的发展现状[ J ].钢铁,2006,41 (10) : 1-4.[3]王晓香.超高强管线钢研究新进展[J].焊管,2010,33(2):5-6.[4]Douglas G.Stalheim,Keith R.Barnes,Dennis B.McCutcheon.高强度石油天然气管线钢的合金设计[C].石油天然气管道工程技术及微合金化钢.北京:冶金工业出版社,2006:45.[5]冯耀荣,高惠临.管线钢显微组织的分析与鉴别[M].西安:陕西科学技术出版社,2008,12:13-14.[6]齐俊杰,黄运华,张跃.微合金化钢[M]. 北京:冶金工业出版社,2006,5:68-69.[7]王路兵,任毅,张鹏程等.高级别管线钢X100的试验研究[J].钢铁,2008,43(1):80-81.[8]曹长娥 译.X100管线钢管的开发[J].焊管,1999,22(2):53.[9]Shuji Okaguchi.Production and Development of Linepipe Steel in Grade X100 and X120[R].Beijing:2005. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%