利用辉光等离子渗碳技术对Ti-6A1-4V进行了表面强化处理.等离子气体为氩气,渗碳温度和时间分别为950℃和3h,工作压力为30~35 Pa.为了避免传统气体渗碳过程中易于产生氢脆的现象,用固体石墨棒作为碳源.渗碳结束后,分别利用OM、FESEM和XRD对渗碳层做分析,并在坏-块摩擦磨损试验机上对处理和未处理样品进行摩擦磨损对比实验.结果发现,渗碳层深度约为416 μm,其表面碳化物(TiC和V8C7)提高了合金表面的硬度和耐磨性能.
参考文献
[1] | Kim T S;Park Y G;Wey M Y .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2003,361:275. |
[2] | Moriya A;Li J F;Watanabe R et al.[J].Journal of the Japan Society of Powder and Powder Metallurgy,2004,5 1:255. |
[3] | Zhecheva A;Sha W;Malinov S;Long A .Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods[J].Surface & Coatings Technology,2005(7):2192-2207. |
[4] | 张高会,张平则,潘俊德,高原,徐重.钛合金双层辉光离子无碳氮共渗摩擦性能研究[J].稀有金属材料与工程,2005(10):1646-1649. |
[5] | Yilbas B S;Sahin A Z;Al-Garni A Z et al.[J].Surface and Coatings Technology,1996,80:287. |
[6] | Tsuji, N;Tanaka, S;Takasugi, T .Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti-6Al-4V alloy[J].Surface & Coatings Technology,2009(10/11):1400-1405. |
[7] | Ankem S;Margolin H .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1986,17:2209. |
[8] | Muraleedharan T M;Meletis E I .[J].Thin Solid Films,1992,221:104. |
[9] | WANG Lijie,XING Yazhe,WANG Hongbo,HAO Jianmin.Effect of nitriding-sulfurizing composite treatment on the tribological behavior of titanium alloys[J].稀有金属(英文版),2010(06):604-607. |
[10] | Kim H M;Kim T S;Suryanarayana C et al.[J].Materials Science and Engineering A,1999,287:59. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%