欢迎登录材料期刊网

材料期刊网

高级检索

采用直流反应磁控溅射法在不同基片上制备了80nm和1000nm厚的氧化钒薄膜.采用X射线衍射仪、原子力显微镜及扫描电镜进行了薄膜微观结构分析.结果表明,薄膜的晶化受衬底影响较大,晶化随膜厚的增加而增强.不同衬底上生长的薄膜晶粒尺寸存在较大差异,Si_3N_4/Si衬底上生长的薄膜晶粒细小,薄膜较为平坦;玻璃衬底、Si衬底和α-Al_2O_3陶瓷衬底上生长的薄膜晶粒较为粗大.随着膜厚的增加,薄膜的晶粒尺寸明显增大,不同衬底上生长的二氧化钒薄膜晶粒都具有一种独特的"纺锤"形或"棒"形.

Vanadium oxide thin films with thickness of 80nm and 1000nm are prepared by DC reactive magnetron sputtering. Analysis of the films microstructure is made by X-ray diffraction, atomic force microscope, and scanning microscope. The analysis reveals that crystalline extent of the films is correlated with the substrates adopted, and is enhanced with film thickness increasing. The substrates adopted have great influence on the films grain size. For the films grown on the glass substrate and the Si substrate, the film grain sizes are smaller and the film surfaces are smoother than those grown on the Si_3N_4 substrate. For different substrates, the film grain sizes increase with film thickness increasing, and the grains have a particular "spindle-like" shape or "club-like" shape.

参考文献

[1] Adler D .Mechanisms for metal-nonmetal transitions in transition metal oxides and sulfides[J].Rev Modem Phys,1968,40(04):714.
[2] Ottaviano L;Pennisi A;Simone F et al.RF sputtered electrochromic V_2O_5 films[J].Optical Materials,2004,27(20):307.
[3] Takahashi K;Wang Y;Cao GZ .Growth and electrochromic properties of single-crystal V2O5 nanorod arrays[J].Applied physics letters,2005(5):3102-1-3102-3-0.
[4] Yamamura T;Watanabe N;Shiokawa Y .Energy efficiency of neptunium redox battery in comparison with vanadium battery[J].Journal of Alloys and Compounds,2006,408-412:1260.
[5] Chen SH;Ma H;Yi XJ;Xiong T;Wang HC;Ke CJ .Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation[J].Sensors and Actuators, A. Physical,2004(1):28-31.
[6] Lampert CM. .Large-area smart glass and integrated photovoltaics[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2003(4):489-499.
[7] Tissot JL .IR detection with uncooled sensors[J].Infrared physics and technology,2004(1/2):147-153.
[8] Murphy D;Ray M;Kennedy A et al.Expanded applications for high performance VO_2 microbolometer FPAs[J].Proceedings of Spie-the International Society for Optical Engineering,2005,5783:448.
[9] Sung Moon .Novel infrared absorbing material coupled uncooled microbolometer[J].Proc IEEE Sens,2004,2:658.
[10] J. Y. Suh;R. Lopez;L. C. Feldman;R. F. Haglund .Semiconductor to metal phase transition in the nucleation and growth of VO_(2) nanoparticles and thin films[J].Journal of Applied Physics,2004(2):1209-1213.
[11] Brassard, D;Fourmaux, S;Jean-Jacques, M;Kieffer, JC;El Khakani, MA .Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films[J].Applied Physics Letters,2005(5):1910-1-1910-3-0.
[12] Yin DC.;Zhang JY.;Zheng XL.;Xu NK. .VANADIUM DIOXIDE FILMS WITH GOOD ELECTRICAL SWITCHING PROPERTY[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,1996(4):1051-1057.
[13] Lopez R;Boatner L A;Haynes T E et al.Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix[J].Journal of Applied Physics,2002,92:4031.
[14] Rajendra Kurnar R T;Karunagaran B;Senthil Kumar V .Structural properties of V_2O_5 thin films prepared by vacuum evaporation[J].Mater Sci Semicond Proe,2003,6:543.
[15] Kuman RTR.;Karunagaran B.;Mangalaraj D.;Narayandass SK.;Manoravi P. Joseph M.;Gopal V. .Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors[J].Sensors and Actuators, A. Physical,2003(1):62-67.
[16] 袁宁一,李金华,林成鲁.溶胶-凝胶VO2薄膜转换特性研究[J].物理学报,2002(04):852-856.
[17] Partlow D P;Gurkovich S R;Radford K C et al.Switchable vanadium oxide films by a sol-gel process[J].Journal of Applied Physics,1991,70(01):443.
[18] 张硕,姜胜林,刘梅冬,张弛.制备工艺对氧化钒薄膜微观结构的影响[J].电子元件与材料,2004(06):35-37.
[19] 杨绍利,徐楚韶,陈厚生,胡再勇.由工业V2O5制取VO2薄膜[J].钢铁钒钛,2002(02):7-10.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%