The thermomechanical analysis (TMA) of Cu0.5Tl0.5Ba2Ca2-xRxCu3O10-δ, where R=Pr and La, with 0.0≤x≤0.15, was carried out in temperature range from 450 to 1145 K. The samples were prepared by single-step solid state reaction technique. The prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The superconductivity of the prepared samples was investigated by electrical resistivity measurement. The results showed that low substitution content enhanced the (Cu0.5Tl0.5)-1223 phase formation, while the higher substitution content degraded this phase. The higher superconducting transition temperatures Tc were found to be 114 K and 109 K at x= 0.025 for Pr- and La-substitutions, respectively. The average linear thermal expansion coefficient increased as x increased, while the shrinkage temperature decreased as x increased. Those results were emphasized by porosity and Vickers microhardness calculations. Debye temperature θD was calculated from the linear thermal expansion coefficient data and correlated to Tc to estimate the electron-phonon coupling λep.
参考文献
[1] | H. Ihara, Y. Sekita, F. Tateai, N.A.Khan, K. Ishida, E. Harashima, T. Kojima, H. Yamamoto, K. Tanaka, Y. Tanaka, N. Terada and H. Obara: IEEE Trans. Appl. Supercond., 1999, 9, 1551. [2 ] N.A. Khan, Y. Sekita, F.Tateai, T. Kojima, K. Ishida, N. Terada and H. Ihara: Physica C, 1999, 320, 39. [3 ] H. Ihara, K.H.Yamafuji and T. Morishita: Advances in Superconductivity VII, Springer, Tokyo, 1995, 225. [4 ] N.A. Khan, A.A. Khurram and M. Mazhar: Physica C, 2004, 407, 23. [5 ] J.D. Guo, W.L. Zhao, R.S. Qin, L. Hua, H. Tang, G.H. He, Y.Z. Wang, G.W. Qiao and B.L. Zhou: Physica C, 1997, 282-287, 1449. [6 ] G.K. White, R. Driver and R.B. Roberts: Int. J. Thermophys., 1991, 12, 687. [7 ] S.J. Collocott, G.K. White, S.X. Dou and R.K. Williams: Phys. Rev. B, 1987, 36, 5684. [8 ] M. Yilmazlar, H.A. Cetinkara, M. Nursoy, O. Ozturk and C. Terzioglu: Physica C, 2006, 442, 101. [9 ] V.A.M. Brabers: Bull. Soc. Chlm. Belg., 1992, 101, 193. [10] P. Badica, A. Iyo, A. Crisan, Y. Ishiura, A. Sundaresan and H. Ihara: Supercond. Sci. Technol., 2002, 15, 964. [11] A.I. Abou Aly, R. Awad, M. Kamal and M. Anas: J. Low Temp. Phys., 2011, 163, 184. [12] R. Awad: Supercond. Sci. Technol., 2002, 15, 933. [13] P. Badica, A. Iyo, A. Crisan, H. Ihara: Supercond. Sci. Technol., 2002, 15, 975. [14] P.W. Anderson: Phys. Rev. Lett., 1991, 67, 2092. [15] R. Awad and N.H. Mohamed: Supercond. Sci. Technol., 2004, 17, 35. [16] H. Zhou, C.L. Seaman, Y. Dalichaouch, B.W. Lee, K.N. Yang, R.R. Hake and M.B. Maple: Physica C, 1988, 152, 321. [17] W.L. Holstein: J. Phys. Chem., 1993, 97, 4224. [18] M. Jergel, F. Hanic, G. Plesch, V. Strbik, J. Liday, C.F. Guajardo and G.S.C. Puente: Supercond. Sci. Technol., 1994, 7, 931. [19] Y.D. Huang, N. Hort, H. Dieringa and K.U. Kainer: Compos. Sci. Technol., 2005, 65, 137. [20] S.C. Tjong and K.F. Tam: Mater. Chem. Phys., 2006, 97, 91. [21] H. Kato, H.S. Chen and A. Inoue: Scripta Mater., 2008, 58, 1106. [22] R. Awad, A.I. Abou Aly, S.A. Mahmoud and M.M.E. Barakat: Supercond. Sci. Technol., 2007, 20, 401. [23] S.G. Elsharkawy and R. Awad: J. Alloy. Compd., 2009, 478, 642. [24] K. Tanaka, A. Iyo, N. Terada, K. Tokiwa, S. Miyashita, Y. Tanaka, T. Tsukamoto, S.K. Agarwal, T. Watanabe and H. Ihara: Phys. Rev. B, 2001, 63, 064508. [25] R. Awad, A.I. Abou Aly, S. Isber and W. Malaeb: Solid State Commun., 2008, 145(4), 201. [26] Y. Wang, T. Plackowski and A. Junod: Physica C, 2001, 355, 179. [27] J. Hermans, D.T. Morelli, G.W. Smith and S.C. Strite: Phys. Rev. B, 1988, 37, 1604. [28] S. Martin, A.T. Fiory, R.M. Fleming, L.F. Schneemeyer and J.V. Waszczak: Phys. Rev. B, 1990, 41, 846. [29] R. Zhao, X. Wang, J. Tao, X. Yang, H. Ma and X. Zhao: J. Alloy. Compd., 2009, 470, 379. [30] R. Awad, A.I. Abou Aly, M. Kamal and M. Anas: J. Supercond. Nov. Magn., 2011, 24, 1947. |
- 下载量(0)
- 访问量(174)
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%