为了研究钢铁材料在淬火过程中内部组织和应力的变化,以自主研发的SDC99钢为研究对象,考虑相变潜热的影响,采用有限元方法对偏心圆环的淬火过程进行模拟仿真,并对淬火过程中模型的温度场、应力场和组织场的变化进行分析和研究。结果表明:经实验测定淬火过程中温度场及残余应力的分布与模拟结果吻合较好,偏心圆环上最大残余应力出现在45°及315°位置;模型硬度的分布与其马氏体含量分布趋势一致,模拟的硬度值略小于实测值。
For the purpose of researching microstructure and residual stress changing process in quenching of metal material, taking a new developed steel SDC99 as the research object, FEM method is used to simulate the quenching process of eccentric circular model considering the influence of latent heat. Furthermore, the evolution of temperature field, stress field and phase field of the model during the quenching process are explored and evaluated in detail. Experimental results show that both the temperature field and the residual stress distribution obtained from numerical simulation fit well with the experimental value. The maximum residual stresses of the eccentric circular are at the locations with angles of 45° and 315°. The hardness distribution is consistent with the distribution of martensite, while the hardness value obtained from simulation is slightly less than the measured one.
参考文献
[1] | 潘健生.45钢淬火三维瞬态温度场与相变的计算机模拟[J].热加工工艺,1998(01):9. |
[2] | 潘健生;胡明娟.计算机模拟与热处理智能化[J].金属热处理,1998(07):21-23. |
[3] | 宋广胜,刘相华,王国栋,徐香秋,李国臣.22CrMo钢渗碳淬火过程组织与应力变化的数值模拟[J].钢铁研究学报,2006(10):36-40. |
[4] | Ferguson BL;Li Z;Freborg AM .Modeling heat treatment of steel parts[J].Computational Materials Science,2005(3):274-281. |
[5] | C. Camurri;C. Carrasco;J. Dille .Residual stress during heat treatment of steel grinding balls[J].Journal of Materials Processing Technology,2008(1/3):450-456. |
[6] | SMOLJAN B;LLJKIC D;TOMSAIC N .Computer sim-ulation of mechanical properties of quenched and tem-pered steel specimen[J].Journal of Achievement in Materials and Manufacturing Engineering,2010,40(02):155-159. |
[7] | 周志方,王晓燕,顾剑锋.偏心圆环淬火过程的数值模拟[J].机械工程学报,2011(12):62-66,73. |
[8] | Caner Simsir;C. Hakan Gur .3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution[J].Journal of Materials Processing Technology,2008(1/3):211-221. |
[9] | Li Huiping;Zhao Guoqun;Niu Shanting .FEM simulation of quenching process and experimental verification of simulation results[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(0):705-714. |
[10] | Li HP;Zhao GQ;He LF .Finite element method based simulation of stress-strain field in the quenching process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):276-290. |
[11] | Simsir C;Gur CH .A FEM based framework for simulation of thermal treatments: Application to steel quenching[J].Computational Materials Science,2008(2):588-600. |
[12] | Kakhki, ME;Kermanpur, A;Golozar, MA .Numerical simulation of continuous cooling of a low alloy steel to predict microstructure and hardness[J].Modelling and simulation in materials science and engineering,2009(4):045007:1-045007:21. |
[13] | Arif Sugianto;Michiharu Narazaki;Minoru Kogawara;Atsushi Shirayori;Soo-Young Kim;Satoshi Kubota .Numerical simulation and experimental verification of carburizing-quenching process of SCr420H steel helical gear[J].Journal of Materials Processing Technology,2009(7):3597-3609. |
[14] | Arif Sugianto;Michiharu Narazaki;Minoru Kogawara .Failure analysis and prevention of quench crack of eccentric holed disk by experimental study and computer simulation[J].Engineering failure analysis,2009(1):70-84. |
[15] | 李绍宏 .高强韧冷作模具钢组织设计与组织控制研究[D].上海:上海大学,2011. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%