采用两种无机填料Si3N4和Al(OH)3复合填充环氧树脂制备了环氧模塑料(EMCs),研究了两种填料用量及单独添加和复合添加对环氧模塑料导热性能和阻燃性能的影响。研究结果表明,单独添加Si3N4或A1(OH)3对环氧模塑料导热性能和阻燃性能的影响规律基本一致,即随着填料含量的增加,环氧模塑料的导热性能和阻燃性能均有不同程度的提高;复合添加Si3N4和AI(OH)3对环氧模塑料的导热性能和阻燃性能均起到积极作用,但是随着填料中Si3N4与Al(OH)3体积比的变化,材料导热性能与阻燃性能会产生交叉耦合作用。当填料中Si3N4与Al(OH)3体积比为3:2,总体积分数为60%时,环氧模塑料的导热率可以达到2.15w/(m·K),氧指数为53.5%,垂直燃烧达到UL-94V-0级。
The epoxy molding compounds (EMCs) were prepared by filling high thermal conductive Si3N4 and flame retardant Al(OH)3 into the epoxy. The effects of two fillers on the thermal conductivity and flame retardant of the EMCs were investigated under sole and hybrid fillers filled. The experimental results show that two kinds filler of Si3N4 and Al(OH)3 have similar activity on the flame retardant and thermal conductivity of the EMCs, i.e. with the increasing of filler in the epoxy, the flame retardant and thermal conductivity of the EMCs were improved to a certain extent depend on the type of fillers. Hybrid fillers have a positive effect on the thermal conductivity and flame retardant of EMCs. However, with the volume ratio of Si3 N4 to Al(OH)3 changing, the contribution of fillers to the thermal conductivity and flame retardant of EMC appeare crosscoupling each other. When the volume fraction of the hybrid fillers is 60% and the volume ratio of Si3N4 to Al(OH)3 is 3 : 2, EMCs with thermal conductivity of 2.15 W/(m K), LOI of 53.5% and UL- 94 vertical burning test ranking of V- 0 was obtained.
参考文献
[1] | 孙曼灵. 环氧树脂应用原理与技术 [M]. 北京: 机械工业出版社, 2002: 424-490. |
[2] | 李芝华, 谢科予, 任冬燕. 电路板用无卤阻燃环氧树脂材料研究进展 [J]. 中国塑料, 2005, 19(12): 1-6. |
[3] | Levchik S, Piotrowski A, Weil E, et al. New developments in flame retardancy of epoxy resins [J]. Polymer Degradation and Stability, 2005, 88(1): 57-62. |
[4] | Mauerer O. New reactive, halogen-free flame retardant system for epoxy resins [J]. Polymer Degradation and Stability, 2005, 88(1): 70-73. |
[5] | Wang X D, Zhang Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance [J]. European Polymer Journal, 2004, 40(2): 385-395. |
[6] | Chand N, Jain D. Evaluation of a. c. conductivity behaviour of graphite filled polysulphide modified epoxy composites [J]. Bulletin of Materials Science, 2004, 27(3): 227-233. |
[7] | Ling L L, Chiu Y C, Wu S C. Preparation of silicon-phosphorous-containing epoxy resins from the fusion process to bring a synergistic effect on improving the resins' thermal stability and flame retardancy [J]. Polymer, 2003, 87(3): 404-411. |
[8] | Yukihiro K, Masatoshi I. Development of environmentally safe flame-retarding epoxy resin compounds without halogen and phosphorous derivatives and their application to printed wiring boards [J]. Nec Research and Development, 2003, 43(3): 256-262. |
[9] | Wong C P, Bollampally R S. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging [J]. Journal of Applied Polymer Science, 1999, 74(14): 3396-3403. |
[10] | Paine R T, Pruss E A, Wood G L, et al. Polyner Nanocomposites [M]. Albuquerque: ACS Publications, 2001: 27-38. |
[11] | Lee W S, Yu J. Comparative study of thermally conductive fillers in underfill for the electronic components [J]. Diamond and Related Materials, 2005, 14(10): 1647-1653. |
[12] | He H, Fu R L, Han Y C, et al. High thermal conductive Si3N4 particle filled epoxy composites with a novel structure [J]. Journal of Electronic Packaging, 2007, 129(4): 469-472. |
[13] | Hirao K, Watari K, Hayashi H, et al. High thermal conductivity silicon nitride ceramic [J]. MRS Bulletin, 2001, 26(6): 451-455. |
[14] | He H, Fu R L, Shen Y, et al. Preparation and properties of Si3N4/PS composites used for electronic packaging [J]. Composites Science and Technology, 2007, 67: 2493-2499. |
[15] | He H, Fu R L, Han Y C, et al. Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions [J]. Journal of Materials Science, 2007, 42(16): 6749-6754. |
[16] | Haurie L, Fernandez A I, Velasco J I, et al. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures [J]. Polymer Degradation and Stability, 2007, 92(6): 1082-1087. |
[17] | 李红霞, 黄宏海, 田 明, 等. Al(OH)3和Mg(OH)2阻燃EVA性能研究 [J]. 中国塑料, 2006, 20(9): 67-72. |
[18] | Tan J C, Tsipas S A, Golosnoy I O, et al. A steady-state bi-substrate technique for measurement of the thermal conductivity of ceramic coatings [J]. Surface & Coatings Technology, 2006, 201(3/4): 1414-1420. |
[19] | 沈 源. 环氧塑封料导热通道构造与导热性能 . 南京: 南京航空航天大学, 2008. |
[20] | Wang J S, Liu Y, Zhao H B, et al. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate [J]. Polymer Degradation and Stability, 2009, 94(4): 625-631. |
[21] | Li X, Ou Y X, Shi Y S. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate [J]. Polymer Degradation and Stability, 2002, 77(3): 383-390. |
[22] | Bolt J D, Button D P, Yost B A. Ceramic-fiber-polymer composites for electronic substrates [J]. Materials Science and Engineering A, 1989, 109: 207-211. |
[23] | Barta S, Bielek J, Dieska P. Thermal conductivity and limiting oxygen index of basic rubber blend/aluminium hydroxide particulate composite [J]. Plastics Rubber and Composites, 1999, 28(2): 62-64. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%