采用等温压缩试验法.研究原位合成TiB2(质量分数,8%)/6351复合材料在变形温度为300~550℃和应变速率为0.001~10 s-1范围内的高温变形特性.根据动态材料模型(DMM)建立TiB2/6351复合材料的加工图.采用TEM观察压缩后试样的微观组织.结果表明:加工图上的1个失稳区出现在较高应变速率(约0.631~10 s-1)区域,增强体颗粒和基体的界面处开裂甚至增强体颗粒本身发生破碎;TiB2/6351复合材料高温变形时的主要软化机制为动态回复和动态再结晶,在温度.320~380℃、应变速率0.01~0.3162 s-1区域内主要发生动态回复,功率耗散效率为17.5%~19.8%.在温度440~500℃、应变速率0.1~0.005 s-1和温度500~550℃、应变速率0.1~0.001 s-1范围为动态再结晶发生区域,功率耗散效率20%~25.6%.试验参数范围内,复合材料热变形的最佳工艺参数为:热加工温度为440~500℃,应变速率为0.1~0.005 s-1.
参考文献
[1] | Lloyd D J .[J].International Materials Reviews,1994,39(01):1. |
[2] | Ganesan G;Raghukan K;Karthikeyan .[J].Journal of Materials Processing Technology,2005,166:423. |
[3] | Ramanathan S;Karthikeyan R;Ganasen G .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,441:321. |
[4] | Cavaliere P;Cerri E;Leo P .[J].Composites Science and Technology,2004,64:1287. |
[5] | Cavaliere P;Cerri E;Evangelista E .Isothermal forging of AA2618+20% Al2O3 by means of hot torsion and hot compression tests[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):857-861. |
[6] | Vedani M;Errico F D;Gariboldi E .[J].Composites Science and Technology,2006,66:343. |
[7] | Narayana Murty S V S;Nageswara Rao B;Kashyap B P .[J].Composites Science and Technology,2003,63:119. |
[8] | Prasad Y V R K .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1996,A27:235. |
[9] | Prasad Y V R K;Seshacharyulu T .[J].International Materials Reviews,1998,43(06):243. |
[10] | Prasad Y V R K;Sastry D H.[J].Intermetallics,2000(08):1067. |
[11] | Ziegler H.Progress in Solid Mechanics[M].Amsterdam:North-Holland Publishing Company,1965:91. |
[12] | 白亮,陈东,马乃恒,王浩伟.原位生成TiB2/6351复合材料的组织和性能[J].热加工工艺,2007(12):30-33. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%