欢迎登录材料期刊网

材料期刊网

高级检索

采用扩散法制备了两种掺杂浓度的硅pn结二极管,对它们的室温近红外电致发光性能进行了研究.结果表明,轻掺硅pn结二极管室温电致发光谱中只有带边峰(1.1eV),而重掺硅pn结二极管在较大的注入电流下,除带边峰外还有0.78eV发光峰,该发光峰的强度随注入电流增加呈指数增长.在低温光致发光谱中没有出现与缺陷相关的发光峰,在高分辨截面透射电镜照片中也没有发现位错或位错环等缺陷.0.78eV发光峰可能是由于大量硼扩散进入硅晶格内产生的应力造成带隙变化,注入的载流子在此处进行辐射复合产生的.

参考文献

[1] L.T.Canham .Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers[J].Applied Physics Letters,1990,57(10):1046-1048.
[2] S.Schuppler;S.L.Friedman;M.A.Marcus et al.Size,shape,and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si[J].Physical Review B,1995,52:4910.
[3] 张俊杰,孙甲明,杨阳,张新霞,刘海旭,W.Skorupa,M.Helm.纳米硅微晶对于Er离子掺杂的SiO2薄膜的光致发光和电致发光的不同影响[J].材料科学与工程学报,2009(01):135-138.
[4] Minoru Fujii;Masato Yoshida;Yoshihiko Kanzawa .1.54μm photoluminescence of Er↑(3+) doped into SiO↓(2) films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er↑(3+)[J].Applied physics letters,1997(9/12):1198-1200.
[5] 孙甲明,张俊杰,杨阳,张新霞,刘海旭,W.Skorupa,M.Helm.稀土离子注入的硅材料MOS结构高效率电致发光器件[J].材料科学与工程学报,2009(01):121-124.
[6] D.J.Lockwood;Z.H.Lu;J.M.Baribeau .Quantum Confined Luminescence in Si/SiO2 Superlattices[J].Physical Review Letters,1996,76:539.
[7] 张新霞,孙甲明,张俊杰,杨阳,刘海旭.半绝缘Si/SiO2超晶格结构在交流电场下的电致发光特性[J].材料科学与工程学报,2009(01):129-131,152.
[8] Wal Lek Ng;M.A.Louren;R.M.Gwilliam et al.An efficient room-temperature silicon-basde light-emitting diode[J].NATURE,2001,410:192-194.
[9] M.A. Lourenco;M. Milosavljevic;G. Shao;R.M. Gwilliam;K.P. Homewood .Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2006(1/2):36-40.
[10] N.A.Sobolev .Defect engineering in implantation technology of silicon light-emitting structures with dislocation-related luminescence[J].SEMICONDUCTORS,2010,44:1-123.
[11] J. M. Sun;T. Dekorsy;W. Skorupa;B. Schmidt;M. Helm .Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes[J].Applied physics letters,2003(19):3885-3887.
[12] J. M. Sun;T. Dekorsy;W. Skorupa;B. Schmidt;A. Muecklich;M. Helm .Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes[J].Physical review, B. Condensed matter and materials physics,2004(15):155316.1-155316.11.
[13] 杨阳,孙甲明,张俊杰,张新霞,刘海旭,W.Skorupa,M.Helm.离子注入缺陷局域掺杂的高效率硅pn结发光二极管[J].材料科学与工程学报,2009(01):142-145.
[14] V. Kveder;M. Badylevich;E. Steinman;A. Izotov;M. Seibt;W. Schroter .Room-temperature silicon light-emitting diodes based on dislocation luminescence[J].Applied physics letters,2004(12):2106-2108.
[15] T.Hoang;P.LeMinh;J.Holleman;J.Schmitz .Strong efficiency improvement of SOI-LEDs through carrier confinement[J].IEEE Electron Device Lett,2006,27:105.
[16] T.Hoang;J.holleman;P.LeMinh et al.Influence of dislocation loops on the near-infrared light emission from silicon diodes[J].IEEE Transactions on Electron Devices,2007,54:1860.
[17] Einar O.Sveinbjornsson;J.Weber .Room temperature electroluminescence from dislocation-rich silicon[J].Applied Physics Letters,1996,69:18.
[18] Xiang, L.;Li, D.;Jin, L.;Yang, D. .Dislocation-related electroluminescence of silicon after electron irradiation[J].Solid State Communications,2012(21):1956-1959.
[19] R.Sauer;J.Weber;J.Stolz et al.Dislocation-related Photoluminescence in Silicon[J].Appl Phys a-Mater,1985,36:1-13.
[20] N.A.Drozdov;A.A.Patrin;V.D.Tkachev .Nature of Dislocation Luminescence in Silicon[J].Physical Status Solidi B,1977,83:K137-K139.
[21] N.A.Drozdov;A.A.Patrin;V.D.Tkachev .Recombination Radiation on Dislocations in silicon[J].JETP LETTERS,1976,23:597-599.
[22] E A Steinman;V I Vdovin;T G Yugova .Dislocation structure and photoluminescence of partially relaxed SiGe layers on Si(001) substrates[J].Semiconductor Science and Technology,1999(6):582-588.
[23] L.Xiang;D.Li;L.Jin;B.Pivac,D.Yang .The origin of 0.78eV line of the dislocation related luminescence in silicon[J].Journal of Applied Physics,2012,112:063528.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%