欢迎登录材料期刊网

材料期刊网

高级检索

基于物理中面的概念,建立了压电功能梯度板(FGM)几何非线性静力弯曲的基本方程,利用Ritz法研究了材料性质、梯度指数等对FGM板考虑几何非线性时弯曲变形的影响,并通过不同的电压施加方式探讨了压电材料对FGM板变形控制的规律.与已有文献结果对比分析表明,本文建立的方程和采用的方法是可靠的;基于几何非线性方程求解功能梯度材料板的静力变形时,计算偏差随着物理中面与几何中面位置偏差的增大而增大,在利用压电材料对FGM板的变形进行控制时,宜采用物理中面.

参考文献

[1] 沈惠申.功能梯度复合材料板壳结构的弯曲、屈曲和振动[J].力学进展,2004(01):53-60.
[2] Zabihollah A;Sedagahti R;Ganesan R.Active vibration suppression of smart laminated beams using layerwise theory and an optimal control strategy[J].Smart Materials & Structures,20076(6):2190-2201.
[3] 李双蓓;黄君;顾春霞;黄贤智.强电场下压电功能梯度板非线性动力分析的样条有限点法[J].玻璃钢/复合材料,2014(4):8-12.
[4] J.L. Mantari;A.S. Oktem;C. Guedes Soares.Bending response of functionally graded plates by using a new higher order shear deformation theory[J].Composite structures,20122(2):714-723.
[5] 李秋全 .功能梯度板弯曲有限元分析[D].扬州大学,2013.
[6] 黄立新;杨真真;张晓磊;阳明.基于ABAQUS的功能梯度材料等参梯度有限元分析[J].玻璃钢/复合材料,2014(2):33-39.
[7] 王明禄;马文蕾;魏高峰.热载荷下功能梯度材料梁的热弹性弯曲[J].玻璃钢/复合材料,2009(1):7-9,6.
[8] Ashraf M. Zenkour.Generalized shear deformation theory for bending analysis of functionally graded plates[J].Applied mathematical modelling,20061(1):67-84.
[9] Pradhan, K. K.;Chakraverty, S..Static analysis of functionally graded thin rectangular plates with various boundary supports[J].Archives of Civil and Mechanical Engineering,20153(3):721-734.
[10] Functionally graded plates behave like homogeneous plates[J].Composites, Part B. Engineering,20081(1):151-158.
[11] 张大光 .基于物理中面功能梯度材料板壳结构分析[D].兰州大学,2010.
[12] 王建哲 .压电功能梯度梁非线性静动力学行为研究[D].湖南大学,2012.
[13] Prakash, T;Singha, MK;Ganapathi, M.Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates[J].Computational Mechanics,20093(3):341-350.
[14] M.K. Singha;T. Prakash;M. Ganapathi.Finite element analysis of functionally graded plates under transverse load[J].Finite elements in analysis & design,20114(4):453-460.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%