欢迎登录材料期刊网

材料期刊网

高级检索

采用基于密度泛函理论的第一性原理平面波超软赝势方法研究了纯锐钛矿相TiO2,S、Mn分别单掺杂及共掺杂TiO2的晶体结构、杂质形成能、电子结构、光学性质和带边位置.计算结果表明,掺杂后TiO2的晶格发生畸变,原子间的键长、原子的电荷量以及晶体体积都发生变化,导致晶体中八面体偶极矩增大,从而有利于光生电子-空穴对的分离;S掺杂在TiO2的价带顶部形成杂质能级,Mn掺杂在TiO2的导带下方和费米能级附近形成杂质能级,共掺杂后TiO2禁带宽度变窄,光学吸收带边发生红移,TiO2在可见光区有明显的吸收;同时S、Mn共掺杂后TiO2的带边位置发生了明显变化,氧化还原能力增强,有利于提高光催化效率

参考文献

[1] Yamashita H;Ichihashi Y;Anpo M .Photocatalytic decomposition of NO at 275K on titanium oxides Included within Y-zeolite cavities:the structure and role of the active sites[J].Journal of Chemical Physics,1996,100(40):16041-16044.
[2] Serpone N .Brief introductory remarks on heterogeous photocatalysis[J].Solar Energy Materials and Solar Cells,1995,38:369-379.
[3] Li Xiaoping;Xu Baokun;Lu Guofan et al.The research and development of photocatalytic degradation of organic contaminant over nanosized TiO2 in water[J].Journal of Functional Materials,1999,30(03):242-245.
[4] Wang R.;Fujishima A.;Chikuni M.;Kojima E.;Kitamura A. Shimohigoshi M.;Watanabe T.;Hashimoto K. .Photogeneration of highly amphiphilic TiO2 surfaces[J].Advanced Materials,1998(2):135-13+.
[5] Michael R. Hoffmann;Scot T. Martin;Wonyong Choi;Detlef W. Bahnemann .Environmental Applications of Semiconductor Photocatalysis[J].Chemical Reviews,1995(1):69-96.
[6] Amy L. Linsebigler;Guangquan Lu;John T. Yates Jr. .Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J].Chemical Reviews,1995(3):735-758.
[7] Choi W;Termin A;Hoffmann M R .The role of metalion dopants in quantum sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J].Journal of Chemical Physics,1994,98(51):13669-13679.
[8] Yan Su;Shuo Chen;Xie Quan;Huimin Zhao;Yaobin Zhang .A Silicon-doped Tio_2 Nanotube Arrays Electrode With Enhanced Photoelectrocatalytic Activity[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2008(5P1):2167-2172.
[9] Asahi R;Morikawa T;Ohwakl T et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.
[10] Sukharev V;Kershaw R .Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water[J].Journal of Photochemistry and Photobiology A:Chemistry,1996,98(03):165-169.
[11] Michael Gratzel .Dye-sensitized solar cells[J].Journal of photochemistry and photobiology, C. Photochemistry reviews,2003(2):145-153.
[12] 吴树新,马智,秦永宁,齐晓周,梁珍成.掺杂纳米TiO2光催化性能的研究[J].物理化学学报,2004(02):138-143.
[13] Tsutomu Umebayashi;Tetsuya Yamaki;Sigeru Tanaka;Keisuke Asai .Visible light-induced degradation of methylene blue on S-doped TiO_2[J].Chemistry Letters,2003(4):330-331.
[14] Umebayashi T.;Yamaki T.;Itoh H.;Asai K. .Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations[J].The journal of physics and chemistry of solids,2002(10):1909-1920.
[15] Hossain FM;Sheppard L;Nowotny J;Murch GE .Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material[J].The journal of physics and chemistry of solids,2008(7):1820-1828.
[16] Di Valentin, C;Pacchioni, G;Onishi, H;Kudo, A .Cr/Sb co-doped TiO2 from first principles calculations[J].Chemical Physics Letters,2009(1/3):166-171.
[17] Kaixi Song;Jiahong Zhou;Jianchun Bao .Photocatalytic Activity of (Copper Nitrogen)-Codoped Titanium Dioxide Nanoparticles[J].Journal of the American Ceramic Society,2008(4):1369-1371.
[18] Wu Pingxiao;Tang Jianwen;Dang Zhi .Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium[J].Materials Chemistry and Physics,2007(2/3):264-269.
[19] Yao Xiaojie;Wang Xudong;Su Lei et al.Band structure and photocatalytic properties of N/Zr co-doped anatase TiO2 from first-principles study[J].Journal of Molecular Catalysis A:Chemical,2011,351:11-16.
[20] Matiullah Khan;Junna Xu;Ning Chen.First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO_2[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2012:539-545.
[21] 赵宗彦,柳清菊,朱忠其,张瑾.S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响[J].物理学报,2008(06):3760-3768.
[22] Zhao Z;Liu Q .Mechanism of higher photocatalytic activity of anatase TiO2 doped with nitrogen under visible-light irradiation from density functional theory calculation[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2008(2):25105-1-25105-10-0.
[23] Gao Pan,Wu Jing,Liu Qing-Ju,Zhou Wen-Fang.First-principles study on anatase TiO2 codoped with nitrogen and praseodymium[J].中国物理B(英文版),2010(08):526-534.
[24] Gao Pan,Zhang Xuejun,Zhou Wenfang,Wu Jing,Liu Qingju.First-principle study on anatase TiO_2 codoped with nitrogen and ytterbium[J].半导体学报,2010(03):1-6.
[25] Zhang X J;Gao P;Liu Q J .First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron[J].Acta Physica Sinica,2010,59(07):4930-4938.
[26] 张学军,柳清菊,邓曙光,陈娟,高攀.Mn,N共掺杂对锐钛矿相TiO2微观结构和性能的影响[J].物理学报,2011(08):561-570.
[27] Cui XY;Medvedeva JE;Delley B;Freeman AJ;Newman N;Stampfl C .Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN[J].Physical review letters,2005(25):6404-1-6404-4-0.
[28] Sato J;Kobayashi H;Inoue Y .Photocatalytic activity for water decomposition of indates with octahedrally coordinated d(1(configuration Ⅱ. Roles of geometric and electronic structures[J].Journal of Physical Chemistry B,2003,107(31):7970-7975.
[29] Stampfl C.;Van de Walle CG. .Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation[J].Physical Review.B.Condensed Matter,1999(8):5521-5535.
[30] Chen X Y;Liu S X .Preparation and characterization of S-doped Ti1-xSxO photocatalyst with wide range light response[J].Acta Physico-Chimica Sinica,2007,23(05):701-708.
[31] Nethercot Jr A .Prediction of Fermi energies and photo-electric thresholds based on electronegativity concepts[J].Physical Review Letters,1974,33:1088-1091.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%