欢迎登录材料期刊网

材料期刊网

高级检索

通过将改进的X-W延性金属断裂模型结合修正的von-Mises准则嵌入ABAQUS/explicit用户材料子程序VUMAT的方式,对一系列铝合金2A12-T4试件的渐进断裂过程进行数值模拟,该模型以连续损伤力学为基础,并考虑静水压力和 Lode 角对损伤变量的作用。为了预测该模型的有效性并预测金属的延性断裂,对铝合金2A12-T4光滑圆棒、带缺口的棒材和紧凑拉伸试件(CT试件)进行单向拉伸试验及数值模拟。同时对比分析几何非线性和屈服准则的影响在数值仿真计算中的差异。结果表明,该断裂模型结合修正的von-Mises屈服准则可很好地预测2A12-T4试件渐进破坏试验的载荷-位移曲线及各试件的宏观断裂形貌。其中,“隧道”效应能够很好地解释CT试件处于平面应变状态的中心层和平面应力状态的表面层的抗断裂能力的差异。

A modified X-W ductile fracture model with modified von-Mises yield criterion based on the continuum damage mechanics which combined the effect of pressure and Lode angle on damage variable was implemented into ABAQUS/explicit through the user subroutine VUMAT to simulate the progressive failure of specimens of aluminum alloy 2A12-T4. In order to verify the modified fracture model and predict the progressive failure behavior of the ductile metals, a series of experiments of aluminum alloy 2A12-T4 specimens including smooth and notched round bars and compact tension (CT) specimen as well as corresponding numerical performances were conducted. Meanwhile, different numerical simulations with or without geometric non-linearity and different yield criteria were studied by comparing the difference. The numerical results show that the fracture model with modified von-Mises yield criterion can accurately and effectively predict the experimental results of 2A12-T4 specimens including load-displacement curves and macroscopic fracture morphology. Among them, the“tunnel”effect appearing in CT specimen can directly explain the difference of the fracture resistance between in plane stress layer and in plane strain layer.

参考文献

[1] 赵飞,周文龙,孙中刚,陈国清,黄遐,曾元松.不同预弯半径下2A12铝合金时效成形[J].中国有色金属学报,2011(02):303-310.
[2] 李红英,宾杰,王晓峰,唐宜.用原位电阻法研究2Al2铝合金的连续冷却转变[J].中国有色金属学报,2011(09):2068-2074.
[3] 万明珍,张在强,吕鹏,季乐,邹阳,蔡杰,关庆丰.热循环作用下2A12铝合金的微观结构与性能[J].中国有色金属学报,2013(04):939-943.
[4] 郭伟国,田宏伟.几种典型铝合金应变率敏感性及其塑性流动本构模型[J].中国有色金属学报,2009(01):56-61.
[5] 黄学伟,蔡力勋,包陈,陈龙.基于低周疲劳损伤的裂纹扩展行为数值模拟新方法[J].工程力学,2011(10):202-208.
[6] 陈龙,蔡力勋.基于材料低周疲劳的裂纹扩展预测模型[J].工程力学,2012(10):34-39.
[7] C.A.Duarte;O.N.Hamzeh;T.J.Liszka .A generalized finite element method for the simulation of three- dimensional dynamic crack propagation[J].Computer Methods in Applied Mechanics and Engineering,2001(15/17):2227-2262.
[8] MCCLINTOCK F A .A criterion for ductile fracture by the growth of holes[J].Journal of Applied Mechanics,1968,35(02):363-360.
[9] GURSON A L .Continuum theory of ductile rupture by void nucleation and growth[J].Journal of Engineering Materials and Technology,1977,99(01):2-15.
[10] RICE J R;TRACEY D M .On the ductile enlargement of voids in triaxial stress fields[J].Journal of the Mechanics and Physics of Solids,1969,17(03):201-217.
[11] WANG T J .A continuum damage model for ductile fracture of weld heat affected zone[J].Engineering Fracture Mechanics,1991,40(06):1075-1082.
[12] WANG T J .Micro-and macroscopic damage and fracture behavior of welding coarse grained heat affected zoned of a low alloy steel mechanisms and modeling[J].Engineering Fracture Mechanics,1993,45(06):799-812.
[13] YU Song,ZHAO Jun.Investigation on Blanking of Thick Sheet Metal Using the Ductile Fracture Initiation and Propagation Criterion[J].上海交通大学学报(英文版),2012(05):531-536.
[14] KAMOULAKOS A;CULIERE P;ARAKI T.Prediction of ductile metal rupture with the E-W Model in PAM-CRASH[A].Tokyo:Society of Automotive Engineers of Japan,2003:47-52.
[15] KAMOULAKOS A.The ESI-Wilkins-Kamoulakos rupture model[A].Weinheim:Wiley-VCH Verlag GmbH&Co KGaA,2004:795-804.
[16] Xue L .Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxia loading[J].International Journal of Solids and Structures,2007(16):5163-5181.
[17] 刘超,孙秦,刘彦杰,范学领.延性金属渐进破坏试验与数值研究[J].航空材料学报,2013(01):93-99.
[18] 中国航空材料手册编委会.中国航空材料手册[M].北京:中国标准出版社,2002
[19] 杨锋平,孙秦.屈服准则及切线模量修正的弹塑性计算模型[J].力学学报,2010(04):804-810.
[20] Bai, YL;Wierzbicki, T .A new model of metal plasticity and fracture with pressure and Lode dependence[J].International Journal of Plasticity,2008(6):1071-1096.
[21] 刘土光;张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008
[22] 庄茁;由小川;廖剑晖.基于 ABAQUS 的有限元分析和应用[M].北京:清华大学出版社,2009
[23] 孟凡中.弹塑性有限变形理论和有限元方法[M].北京:清华大学出版社,1985
[24] HIBBIT H D;MARCAL P V;RICE J R .A finite element formulation for problems of large strain and large displacement[J].International Journal of Solids and Structures,1970,6(08):1069-1086.
[25] 曹金凤;石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2010
[26] 杨锋平,孙秦.韧性金属材料渐进断裂的有限元算法研究[J].金属学报,2008(04):489-494.
[27] CHEN C R;KOLEDNIK O;HEERENS J;FISCHER F D .Three-dimensional modeling of ductile crack growth:Cohesive zone parameters and crack tip triaxiality[J].Engineering Fracture Mechanics,2006,72(13):2072-2094.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%