将负载催化剂的SBA-15型介孔分子筛(方法1)、偶联剂表面改性的SBA-15(方法2)、偶联剂表面改性后负载催化剂的SBA-15(方法3),采用原位聚合法分别制备了SBA-15/聚双环戊二烯(PDCPD)复合材料。研究了不同制备方法对SBA-15/PDCPD力学性能的影响。结果表明,对于方法2,虽然偶联剂改性SBA-15可提高与PDCPD界面作用力,但由于分子筛孔道中的双环戊二烯(DCPD)单体难以发生聚合反应,导致复合材料的力学性能较PDCPD没有明显改善。采用方法1及方法3可使PDCPD分子链在SBA-15孔道中生成,改善了PDCPD基体与SBA-15的界面作用力,使复合材料的力学性能明显改善。采用方法1,SBA-15/PDCPD质量比为2∶100时,复合材料拉伸强度较PDCPD提高了24.5%,弯曲强度提高了24%。采用方法3制备的复合材料中偶联剂分子占据了SBA-15孔道空间,导致孔道中生成聚合物分子链数量较方法1少,使其力学性能提高幅度低于方法1,但优于方法2。
The mesoporous molecular sieve(SBA-15)/polydicyclopentadiene(PDCPD) composites were prepared by in-situ polymerization with SBA-15 supported catalyst(method 1),SBA-15 modified by coupling agent(method 2),modified SBA-15 supported catalyst(method 3),respectively.The effect of preparing methods on mechanical performances of SBA-15/PDCPD was investigated.The results show that for the SBA-15/PDCPD composites prepared by method 2,although modified SBA-15 can improve the interface interaction between SBA-15 and PDCPD matrix,the polymerization of dicyclopentadiene(DCPD) monomer is difficult to occur in the pores of SBA-15,causing the mechanical performances of composites improve weakly,compared with PDCPD.Method 1 and method 3 applied to prepare SBA-15/PDCPD composites are beneficial to the form of PDCPD molecular chains in the pores of SBA-15.The form of molecular chains in the pores can improve the interface interaction between SBA-15 and PDCPD matrix,enhancing the mechanical performances of composites greatly.Compared with PDCPD,the tensile strength and bending strength of SBA-15/PDCPD prepared by method 1 increase by 24.5% and 24% when the mass ratio of SBA-15/PDCPD is 2∶100,respectively.For the composites prepared by method 3,the quantity of PDCPD molecular chains formed in the pores of SBA-15 is smaller than that of method 1 due to the SBA-15 pores occupied by coupling agent molecule,resulting that the mechanical performances is lower than that of method 1,but higher than that of method 2.
参考文献
[1] | 娄渊华, 刘梅红, 王新平. 纳米无机粒子/聚合物复合材料界面结构的研究 [J]. 高分子通报, 2009(4): 38-42. |
[2] | Run M T, Wu S Z, Zhang D Y, Wu G. A polymer/mesoporous molecular sieve composite: Preparation, structure and properties [J]. Mater Chem Phys, 2005, 105(2/3): 341-347. |
[3] | Kojima Y, Matsuoka T, Takahashi H. Preparation of nylon 66/mesoporous molecular sieve composite under high pressure [J]. J Appl Polym Sci, 1999, 74(13): 3254-3258. |
[4] | Zhang F A, Lee D K, Pinnavaia T J. PMMA-mesocellular foam silica nanocomposites prepared through batch emulsion polymerization and compression molding [J]. Polymer, 2009, 50(20): 4768-4774. |
[5] | Dong X C, Wang L, Wang J J, Zhou J F, Sun T X. Evidence of nanoconfinement effects of MCM-41 on propylene polymerization catalyzed by MCM-41 supported metallocene catalyst in the presence and absence of β-Cyclodextrin [J]. J Phys Chem B, 2006, 110(18): 9100-9104. |
[6] | Zhang F A, Lee D K, Pinnavaia T J. PMMA/mesoporous silica nanocomposites: Effect of framework structure and pore size on thermomechanical properties [J]. Polym Chem, 2010(1): 107-113. |
[7] | Sasidharan M, Mal N K, Bhaumik A. In-situ polymerization of grafted aniline in the channels of mesoporous silica SBA-15 [J]. J Mater Chem, 2007, 17(3): 278-283. |
[8] | Ji X L, Eric J H, Hu Q Y, He J B, Yang Z Z, Lu Y F. Mesoporous silica-reinforced polymer nanocomposites [J]. Chem Mater, 2003, 15(19): 3656-3662. |
[9] | Wan N, Li T M, Zhang J S. Polymer-filled porous MCM-41: An effective means to design polymer-based nanocomposite [J]. Mater Lett, 2005, 59(21): 2685-2688. |
[10] | He J, Shen Y B, Evans D G, Xue D. Tailoring the performance of polymer composites via altering the properties of the intrapore polymers of MCM-48 nanocomposites as fillers [J]. Comps Part A: Appl Sci Manuf, 2006, 37(3): 379-384. |
[11] | He J, Shen Y B, Evans D G. A nanocomposite structure based on modified MCM-48 and polystyrene [J]. Micropor Mesopor Mater, 2008, 109(1-3): 73-83. |
[12] | Park I, Peng H G, Gidley D W, Xue S Q, Pinnavaia T J. Epoxy-silica mesocomposites with enhanced tensile properties and oxygen permeability [J]. Chem Mater, 2006, 18(3): 650- 656.. |
[13] | 王 娜, 李明天, 张军旗, 张劲松. MCM-41填加量与偶联修饰对复合材料拉伸性能的影响 [J]. 复合材料学报, 2005, 22(2): 27-33. |
[14] | 王 娜, 梁 艳, 张军旗, 李明天, 张劲松. 超临界CO2方法制备环氧树脂/纳米介孔MCM-41复合材料 [J]. 材料研究学报, 2005, 19(1): 94-101. |
[15] | 陆 昶, 刘宪俊, 陈 权, 张玉清. 介孔分子筛增强聚双环戊二烯 [J]. 高分子学报, 2011(1): 63-69. |
[16] | Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis [J]. Chem Mater, 2005, 17: 4577-4593. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%