欢迎登录材料期刊网

材料期刊网

高级检索

利用平面波展开法研究了二维类正方阿基米德格子(ladybug和bathroom)铝/环氧树脂声子晶体弹性剪切波能带结构.与正方晶格相比,ladybug和bathroom格子都存在高频带隙,而且bathroom格子带隙较宽;ladybug格子有两个各向同性带隙;在相同r0/a(散射体半径与其相邻中心距离比)情况下,分析了ladybug、bathroom格子和正方晶格声子晶体r0/a的变化对带隙相对宽度的影响, 表明类正方阿基米德格子比正方晶格更容易获得带隙.

参考文献

[1] Kushwaha M S;Halevi P;Dobrzynski L et al.Acoustic Band Structure of Periodic Elastic Composites[J].Physical Review Letters,1993,71(13):2022-2025.
[2] Kushwaha M S;Halevi P;Martinez G et al.Theory of Acoustic Band Structure of Periodic Elastic Composites[J].Physical Review B,1994,49(04):2313-2322.
[3] Kushwaha MS .Stop-bands for periodic metallic rods: Sculptures that can filter the noise[J].Applied physics letters,1997(24):3218-3220.
[4] A. Sukhovich;B. Merheb;K. Muralidharan;J. O. Vasseur;Y. Pennec;P. A. Deymier;J. H. Page .Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals[J].Physical review letters,2009(15):136-139.
[5] T. Elnady;A. Elsabbagh;W. Akl;O. Mohamady;V. M. Garcia-Chocano;D. Torrent;F. Cervera;J. Sanchez-Dehesa .Quenching of acoustic bandgaps by flow noise[J].Applied physics letters,2009(13):134104-1-134104-3-0.
[6] Zhong LH;Wu FG;Zhang X;Zhong HL;Zhong S .Effects of orientation and symmetry of rods on the complete acoustic band gap in two-dimensional periodic solid/gas systems[J].Physics Letters, A,2005(1/2):164-170.
[7] Zhou X Z;Wang Y S;Zhang C Z .Effect of Material Parameters on Elastic Band Gaps of Two-dimensional Solid Phononic Crystals[J].Journal of Applied Physics,2009,106(01):014903.
[8] 赵芳,苑立波.二维复式格子声子晶体带隙结构特性[J].物理学报,2005(10):4511-4516.
[9] 董华锋,吴福根,牟中飞,钟会林.二维复式声子晶体中基元配置对声学能带结构的影响[J].物理学报,2010(02):754-758.
[10] 郝国郡,傅秀军,侯志林.正方点阵上Fibonacci超元胞声子晶体的带结构[J].物理学报,2009(12):8484-8488.
[11] Kepler J.Harmonices Mundi[M].Linz,1619:1-150.
[12] Grünbaum B;Shephard G.Tilings and Patterns[M].Freeman,New York,1987:56-121.
[13] Ueda K;Dotera T;Gemma T .Photonic band structure calculations of two-dimensional Archimedean tiling patterns[J].Physical review, B. Condensed matter and materials physics,2007(19):5122-1-5122-11-0.
[14] Jovanovic D;Gajic R;Hingerl K .Refraction and Band Isotropy in 2D Square-like Archimedean Photonic Crystal Lattices[J].Optics Express,2008,16(06):4048-4058.
[15] Kittel C.Introduction to Solid State Physics[M].John Wiley and Sons,Inc,1996:19-33.
[16] 叶文岚 .利用平面波展开法模拟光子晶体波导之慢光效果[D].台北:国立台湾大学,2006.
[17] Goodman J W.Introduction to Fourier Optics[M].McGraw-Hill,Inc,2002:3-60.
[18] Sigalas M;Economou E N .Band Structure of Elastic Waves in Two Dimensional Systems[J].Solid State Communications,1993,86(03):141-143.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%