欢迎登录材料期刊网

材料期刊网

高级检索

采用直流反应溅射法在P-Si(100)衬底上制备了ZnO薄膜,XRD测量表明ZnO为沿c轴高度取向的多晶薄膜,1-V特性曲线表明,ZnO/Si异质结具有明显的整流特性.研究了退火温度对异质结光电转换特性的影响,结果显示,合适的退火温度能显著增大异质结的开路电压和短路电流,进而增大异质结的光电转换效率,经400℃退火后异质结获得最佳的转换效率.当退火温度达到或超过500℃时,异质结的反向电流迅速增加,光生电压和光生电流大幅度减小.通过对ZnO薄膜结构和电学性质的测量和分析,推测异质结的光电转换特性改变主要受ZnO薄膜的电学性质影响.

参考文献

[1] Ye Z Z;Lu J G;Zhang Y Z et al.ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers[J].Applied Physics Letters,2007,91:113503-1131-3.
[2] Wei ZP;Lu YM;Shen DZ;Zhang ZZ;Yao B;Li BH;Zhang JY;Zhao DX;Fan XW;Tang ZK .Room temperature p-n ZnO blue-violet light-emitting diodes[J].Applied physics letters,2007(4):42113-1-42113-3-0.
[3] Pauporte T;Lincot D;Viana B et al.Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition[J].Applied Physics Letters,2006,89:233112-2331-3.
[4] Li H D;Yu S F;Lau S P et al.Simultaneous formation of visible and ultraviolet random lasings in ZnO films[J].Applied Physics Letters,2006,89:021110-0211-3.
[5] Li HD;Yu SF;Abiyasa AP;Yuen C;Lau SP;Yang HY;Leong ESP .Strain dependence of lasing mechanisms in ZnO epilayers[J].Applied physics letters,2005(26):1111-1-1111-3-0.
[6] Sheu J K;Lee M L;Tun C J et al.Ultraviolet band-pass Schottky barrier photodetectors formed by Al-doped ZnO contacts to n-GaN[J].Applied Physics Letters,2006,88:043506-0431-3.
[7] Oh BY;Jeong MC;Moon TH;Lee W;Myoung JM;Hwang JY .Transparent conductive Al-doped ZnO films for liquid crystal displays[J].Journal of Applied Physics,2006(12):24505-1-24505-4-0.
[8] Meyer J;GOrrn P;Hamwi S et al.Indium-free transparent organic light emitting diodes with AI doped ZnO electrodes grown by atomic layer and pulsed laser deposition[J].Applied Physics Letters,2008,93:073308-0731-3.
[9] Kobayashi H;Kogetsu Y;Ishida T et al.Increases in photovoltage of "indium tin oxide/silicon oxide/mat-textured nsilicon" junction solar cells by silicon preoxidation and annealing processes[J].Journal of Applied Physics,1993,74(07):4756.
[10] Kobayashi H.;Nakato Y.;Mori H.;Ishida T. .MECHANISM OF CARRIER TRANSPORT THROUGH A SILICON-OXIDE LAYER FOR [INDIUM-TIN-OXIDE/SILICON-OXIDE/SILICON] SOLAR CELLS[J].Journal of Applied Physics,1995(6):3931-3939.
[11] Kobayashi H.;Yamanaka K.;Nakato Y.;Yoneda K.;Tachibana S. .IMPROVEMENT OF [INDIUM-TIN-OXIDE SILICON OXIDE N-SI] JUNCTION SOLAR CELL CHARACTERISTICS BY CYANIDE TREATMENT[J].Journal of Applied Physics,1997(11):7630-7634.
[12] Kobayashi H;Mori H;Nakato Y .Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method[J].Journal of Applied Physics,1995,77(03):1301.
[13] Ibrahim A A;Ashour A .ZnO/Si solar cell fabricated by spray pyrolysis technique[J].J Mater Sei:Mater Electron,2006,17:835.
[14] Baik D G;Cho M S .Application of sol-gel derived films for ZnO/n-Si junction solar cells[J].Thin Solid Films,1999,354:227.
[15] Fu Z X;Lin B X;Liao G H .Photovoltaic effect of ZnO/Si heterostructure[J].Chinese Physics Letters,1999,16(10):753.
[16] Zhang WY;Meng QL;Lin BX;Fu ZX .Influence of growth conditions on photovoltaic effect of ZnO/Si heterojunction[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2008(8):949-952.
[17] ZHANG Wei-Ying,ZHONG Sheng,SUN Li-Jie,FU Zhu-Xi.Dependence of Photovoltaic Property of ZnO/Si Heterojunction Solar Cell on Thickness of ZnO Films[J].中国物理快报(英文版),2008(05):1829-1831.
[18] 张伟英,邬小鹏,孙利杰,林碧霞,傅竹西.ZnO/Si异质结的光电转换特性研究[J].物理学报,2008(07):4471-4475.
[19] Ma Q B;Ye Z Z;He H P et al.Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO " Ga films[J].Scripta Materialia,2008,58:21.
[20] Wang Y Z;Xu J .Annealing effects of sapphire substrate on properties of ZnO films grown by magnetron sputtering[J].Appl Phys Mater Sci Proc,2007,88:727.
[21] Wang MR;Wang J;Chen W;Cui Y;Wang LD .Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol-gel method[J].Materials Chemistry and Physics,2006(2/3):219-225.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%