欢迎登录材料期刊网

材料期刊网

高级检索

采用钛合金d电子理论设计超弹性钛合金。采用水冷铜坩埚电弧熔炼的方法制备铸锭,经均匀化、冷轧和退火处理后,使用XRD和TEM分析退火后合金相组成,使用U型法测试超弹性。结果表明,Ti-24Nb-4Zr合金经800℃退火后具有优良的超弹性,U型法测试加载3.76%应变在卸载后可以完全回复。Sn具有强烈降低Ms点的作用,使得Ti-24Nb-2Zr-2Sn合金获得稳定的室温β相。300℃退火生成的ω相能够避免塑性变形过早发生,提高Ti-24Nb-2Zr合金的超弹性。但其同样阻碍β相的应力诱发马氏体转变,使得Ti-24Nb-4Zr合金经300℃退火获得的超弹性低于800℃退火获得的结果。

Titanium alloys with super-elasticity were designed by d-electron alloy design theory.Ti-Nb-Zr and Ti-Nb-Zr-Sn alloy ingots were arc-melted in a water-sealed copper crucible.Then,the ingots were homogenized,cold rolled and finally annealed.Phase constitution of the annealed alloys was analyzed by utilizing X-ray diffraction(XRD) scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The super-elasticity of the alloys was measured by U bending tests.Ti-24Nb-4Zr alloy show,excellent super-elasticity that fully recovery is obtained in U bending test with applied strain of 3.76%.The addition of Sn can strongly reduce Ms temperature,so that stable β phase is obtained at room temperature in Ti-24Nb-2Zr-2Sn alloy.The ω phase,which forms during annealing at 300 ℃,can restrain plastic deformation occurring,thus super-elasticity of Ti-24Nb-2Zr alloy increases.Meanwhile,it hinders stress-induced martensite transformation.This effect causes that Ti-24Nb-4Zr alloy annealed at 300 ℃ shows lower super-elasticity than the alloy after annealing at 800 ℃.

参考文献

[1] Long M;Rack HJ .Titanium alloys in total joint replacement--a materials science perspective.[J].Biomaterials,1998(18):1621-1639.
[2] 周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势[J].金属热处理,2005(01):47-50.
[3] 孙敬,崔振铎,朱胜利,杨贤金.生物医用植入钛及钛合金的力学性能研究及进展[J].金属热处理,2005(09):59-62.
[4] 樊亚军,曹继敏,王卫民,陈志宏.医用植入物β型钛合金的力学相容性[J].金属热处理,2010(12):24-28.
[5] T. Duerig;A. Pelton;D. Stockel .An overview of nitinol medical applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(0):149-160.
[6] N.B. Morgan .Medical shape memory alloy applications--the market and its products[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):16-23.
[7] MITSUO NIINOMI .Recent Metallic Materials for Biomedical Applications[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2002(3):477-486.
[8] Okazaki Y;Ito Y;Kyo K et al.Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,213:138-147.
[9] Kuroda D.;Morinaga M.;Kato Y.;Yashiro T.;Niinomi M. .Design and mechanical properties of new beta type titanium alloys for implant materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1998(1/2):244-249.
[10] Baker C .The shape-memory effect in a titanium-35wt% niobium alloy[J].Metal Science Journal,1971,5:92-100.
[11] Hee Young Kim;Hashimoto Satoru;Jae Il Kim .Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys[J].Materials transactions,2004(7):2443-2448.
[12] Kim JI;Kim HY;Inamura T;Hosoda H;Miyazaki S .Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):334-339.
[13] Yusuke Fukui;Tomonari Inamura;Hideki Hosoda .Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy[J].Materials transactions,2004(4):1077-1082.
[14] Takashi Maeshima;Minoru Nishida .Shape Memory Properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn Alloys[J].Materials transactions,2004(4):1096-1100.
[15] Y. L. Hao;S. J. Li;S. Y. Sun;R. Yang .Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):112-118.
[16] Abde-Hady M;Hinoshita K;Morinaga M .General approach to phase stability and elastic properties of t3-type Ti-alloys using electronic parameters[J].Scripta Materialia,2006,55:477-480.
[17] Masumoto K;Horiuchi Y;Inamura T et al.Effects of Si addition on superelastic properties of Ti-Nb-AI biomedical shape memory alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:835-838.
[18] Horiuchi Y;Inamura T;Hosoda H et al.Effect of boron addition on transformation behavior and tensile properties of Ti-Nb-A1 alloy[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,438-440:830-834.
[19] Jae II Kim;Hee Young Kim;Hideki Hosoda .Shape Memory Behavior of Ti-22Nb-(0.5-2.0)O(at percent) Biomedical Alloys[J].Materials transactions,2005(4):852-857.
[20] Kim J I;Kim H Y;lnamura T et al.Effect of annealing temperature on microstructure and shape memory characteristics of Ti-22Nb-6Zr ( at%) biomedical alloy[J].M aterials Transactions,2006,47:505-512.
[21] Eiji Takahashi;Tasuku Sakurai;Sadao Watanabe .Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys[J].Materials transactions,2002(12):2978-2983.
[22] H. Hosoda;Y. Kinoshita;Y. Fukui;T. Inamura;K. Wakashima;H.Y. Kim;S. Miyazaki .Effects of short time heat treatment on superelastic properties of a Ti-Nb-Al biomedical shape memory alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):870-874.
[23] Neelakantan S;Rivera-Diaz-del-Castillo R;Van der Zwaag S .Prediction of the martensite start temperature for β titanium alloys as a function of composition[J].Scripta Materialia,2009,60:611-614.
[24] Morinaga M;Saito J;Morishita M .Design of titanium alloys by means of a d-electrons theory[J].Japanese Journal of Institute of Light Metals,1992,42:614-621.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%