欢迎登录材料期刊网

材料期刊网

高级检索

在模拟工业化生产条件下研究C70250合金的热轧、固溶及时效处理工艺,对比C70250合金板坯的热轧、热轧+时效、热轧+冷轧+时效后合金的力学性能与导电性能,同时研究空冷与水冷对材料力学性能的影响.结果表明:时效析出为C70250合金的主要强化手段,时效前的塑性加工能使合金强度提高4%~5%.XRD分析表明:C70250合金铸锭经热轧开坯,在575~725 ℃之间保温1 h,析出相以Ni_2Si为主;合金开轧与终轧温度应控制在(900±50)~725 ℃之间,热轧板冷却速度不小于2.5 ℃/s;固溶处理制度为(900±50) ℃、1~3 h;时效工艺为400~ 450 ℃、4~6 h,该工艺制备的C70250合金抗拉强度不小于644 MPa,电导率IACS为40%,伸长率为8%.

Hot rolling, solid solution and ageing treatment of C70250 alloy were investigated by mimicking the commercial process. The mechanical and electrical properties of C70250 alloy were analyzed under hot rolling state, aging after hot rolling and aging after cold rolling following hot rolling. The effects of quenching and cooling by radiation on the mechanical properties were also investigated. The results show that aging precipitation is the primary strengthening method for the C70250 alloy. The plastic working prior to the aging process improves the tensile strength by 4%-5%. The hot working temperature should be controlled between (900±50) ℃ and 725 ℃ and followed with on-line quenching. The cooling velocity of hot rolling plate is equal to or higher than 2.5 ℃/s. XRD analysis results show that the main precipitation phase is Ni_2Si after C70250 alloy is hot rolled and kept at 575-725 ℃ for 1 h. The preferable off-line treatment process is heated at (900±50) ℃ for 1-3 h. The suitable aging process is 400-450 ℃ for about 4-6 h. The tensile strength, electrical conductivity (IACS) and elongation of the treated alloy are larger than 644 Mpa, 40% and 8%, respectively.

参考文献

[1] WATANABE C;HIRAIDE H;ZHANG Z;MONZEN R .Microstructure and mechanical properties of Cu-Ni-Si alloys[J].Journal of the Society of Materials Science Japan,2005,54(07):717-723.
[2] FUJIWARA H .Designing high-strength copper alloys based on the crystallographic structure of precipitates[J].Furukawa Review,2004,26:37-42.
[3] YAMAMOTO Y;SASAKI G;YAMAKAWA K;OTA M .High-strength and High-electrical-conductivity copper alloy for high-pin-count lead frames[J].Hitachi Cable Review,2000,19:65-70.
[4] LOCKYER S A;NOBLE F W .Precipitates structure in a Cu-Ni-Si alloy[J].Journal of Materials Science,1994,29:218-226.
[5] 李银华,刘平,田保红,贾淑果,任凤章,张毅.引线框架用Cu-Ni-Si合金的发展[J].材料研究与应用,2007(04):260-264.
[6] 龙永强,刘平,刘勇,张伟民.高性能Cu-Ni-Si合金材料的研究进展[J].材料导报,2008(03):48-51.
[7] 潘志勇,汪明朴,李周,黎三华,陈畅.添加微量元素对Cu-Ni-Si合金性能的影响[J].材料导报,2007(05):86-89,97.
[8] 齐亮,柳瑞清,蔡薇.C70250铜合金抗拉性能和导电性能研究[J].南方金属,2006(02):25-27.
[9] 张旦闻,赵冬梅,董企铭,刘平,刘宏昭.组合时效对Cu-Ni-Si合金性能的影响[J].功能材料,2004(z1):2160-2163,2167.
[10] Yong-qiang Long;Ping Liu;Yong Liu;Wei-min Zhang;Jian-sheng Pan .Simulation of recrystallization grain growth during re-aging process in the Cu-Ni-Si alloy based on phase field model[J].Materials Letters,2008(17/18):3039-3042.
[11] PAN Zhi-yong;WANG Ming-pu;LI Zhou;XIAO Zhu,CHEN Chang .Thermomechanical treatment of super high strength Cu-8.0Ni-1.8Si alloy[J].Transactions of Nonferrous Metals Society of China,2007,17:s1076-s1080.
[12] 鲍俊娟,王海龙.CuNiSiCr合金热处理工艺研究[J].热加工工艺,2005(07):14-16.
[13] LU De-ping;WANG Jun;ATRENS A;ZOU Xing-quan LU Lei SUN Bao-de .Calculation of Cu-rich part of Cu-Ni-Si phase diagram[J].Transactions of Nonferrous Metals Society of China,2007,17:s12-s15.
[14] 赵冬梅,董企铭,刘平,康布熙,黄金亮,田保红,金志浩.Cu-3.2Ni-0.75Si合金时效早期相变规律及强化机理[J].中国有色金属学报,2002(06):1167-1171.
[15] 张旦闻,赵冬梅,董企铭,刘平,刘宏昭.Cu-Ni-Si合金二次时效时的再结晶行为[J].中国有色金属学报,2004(07):1241-1245.
[16] 汪黎,孙扬善,付小琴,薛烽,陈曦.Cu-Ni-Si基引线框架合金的组织和性能[J].东南大学学报(自然科学版),2005(05):729-732.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%