根据Murty失稳判据,利用原始等轴组织的TC11钛合金在780~990℃和0.001~70s-1范围内的等温恒应变速率压缩实验数据,建立了该合金的加工图.依据加工图研究了TC11钛合金的变形机制和变形缺陷与变形热力参数之间的关系.结果表明,在780~990℃和0.001~0.01 s-1范围是超塑性变形区;在780~990℃和高于0.01 s-1范围,易出现β相裂纹和空洞、局部流动以及绝热剪切等流变失稳现象.根据加工图分析,结合微观组织观察结果,并考虑变形抗力的大小,确定出了较佳的变形热力参数范围为850~940℃和0.001~0.01 s-1,最佳的变形热力参数在900℃和0.001 s-1附近.
To investigate the hot deformation and optimize the process configuration for Ti-alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si in α+β forging process,the processing maps(P-maps)are developed for the alloy with α+βmicrostructure based on Murty instability criterion.The P-maps are constructed by the experimental results obtained through the isothermal and constant sirain rate compression test at the temperatures of 780~990℃ and the strain rates of 0.001~70 s-1.The relationship between the deformation mechanism,deformation defect and deformation thermomechanical parameter is studied by using the generated P-maps.The results show that the superplasticity deformation would occur at the temperature range of 780~990℃ and the strain rate range 0.001~0.01 s-1.In addition.flow instability including cracks and cavities in β phase,flow localization and adiabatic shear bands would occur at the above mentioned temperature range under the strain rates greater than 0.01 s-1.According to the P-maps.microstructure and flow stress status,the preferred deformation thermomechanical parameters are,identified.e.g.the temperature range of 850~940℃ and the strain rate range of 0.001-0.01 s-1.The optimum deformation thermomechanical parameter is around the temperature of 900℃and the strain rate of 0.001 s-1.
参考文献
[1] | Ding R;Guo Z X;Wilson A .[J].Materials Science and Engineering,2002,A327:233. |
[2] | Prasad Y V R K;Seshacharyulu T;Medeiros S C et al.[J].Journal of Materials Processing Technology,2001,108:320. |
[3] | Wanjara P;Jahazi M;Monajati H et al.[J].Materials Science and Engineering,2006,A416:300. |
[4] | Prasad Y V R k;Gegel H L;Doraivelu S M et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,ISA(10):1883. |
[5] | Gegel H L.Computer Simulation in Malerials Science[M].ASM International,1986:291. |
[6] | Prasad Y V R K;Sasidhara S.Hot Working Guide:A Compendium of Processing Maps[M].Materials Park,OH:ASM International,1997 |
[7] | Prasad Y V R K;Seshacharyulu T .[J].International Materials Reviews,1998,43(06):243. |
[8] | Murty S V S N;Rao B N .[J].Materials Science and Engineering,1998,A254:76. |
[9] | Long M;Rack H J .[J].Materials Science and Engineering,1995,A194:99. |
[10] | Prasad Y V R K;Seshacharyulu T .[J].Materials Science and Engineering,1998,A243:82. |
[11] | Seshaeharyulu T;Medeiros S C;Prasad Y V R K et al.[J].Materials Science and Engineering,2000,A284:184. |
[12] | Murty S.V.S.N.;Rao B.N. .On tile flow localization concepts in the processing maps of titanium alloy Ti-24A1-2ONb[J].Journal of Materials Processing Technology,2000(1/2):103-109. |
[13] | Venugopal S;Mannan S L;Prasad Y V R K et al.[J].Journal of Nuclear Materials,1995,227:1. |
[14] | Murty S V S N;Rao B N;Kashyap B P .[J].Composites Science and Technology,2003,63:119. |
[15] | Chakravartty JK.;Banerjee S.;Prasad YVRK.;Dey GK. .CHARACTERIZATION OF HOT DEFORMATION BEHAVIOUR OF ZR-2.5NB-0.5CU USING PROCESSING MAPS[J].Journal of Nuclear Materials: Materials Aspects of Fission and Fusion,1995(2):247-255. |
[16] | 俞汉清;陈金德.金属塑性成形原理[M].北京:机械工业出版社,2002 |
[17] | 张立斌.大型钛合金压气机盘超塑性等温锻造模具结构及工艺参数实验研究[J].热加工工艺,1997(01):46. |
[18] | 顾家琳,孙新军,白秉哲.旋锻制备超细晶双相钛合金及其超塑性[J].金属学报,2002(z1):378-381. |
[19] | 文九巴;杨蕴林;杨永顺.超塑性应用技术[M].北京:机械工业出版社,2005 |
[20] | Kaibyshev O A.Superplasticity of Alloys Intermetallics and Ceramics[M].Berlin:springer-verlag,1992:10,198. |
[21] | 曾立英;赵永庆;李丹珂 et al.[J].稀有金属材料与工程,2005,34(z3):268. |
[22] | 高钢强;徐永国.[J].物理测试,1997(04):12. |
[23] | Raj R .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1981,12A:1089. |
[24] | 周军,曾卫东,舒滢,周义刚.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006(02):265-269. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%